
CDT

Causal Dynamical Triangulations

Jerzy Jurkiewicz1

1Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow,
Poland

Krakow, May 2015



CDT

Outline
General introduction

Basic ideas of CDT are derived from the standard QM (QFT)
Path integral for Quantum Gravity
Method of DT - 2d example
Regularization of the theory
Fractal structure of space-time

Causal Dynamical Triangulations
Geometry of 1d states and 2d configurations
CDT - generalization to higher dimensions
Quantum amplitude - partition function

Numerical results
Phase structure
Semiclassical volume distribution



CDT

Outline
General introduction

Basic ideas of CDT are derived from the standard QM (QFT)
Path integral for Quantum Gravity
Method of DT - 2d example
Regularization of the theory
Fractal structure of space-time

Causal Dynamical Triangulations
Geometry of 1d states and 2d configurations
CDT - generalization to higher dimensions
Quantum amplitude - partition function

Numerical results
Phase structure
Semiclassical volume distribution



CDT

Outline
General introduction

Basic ideas of CDT are derived from the standard QM (QFT)
Path integral for Quantum Gravity
Method of DT - 2d example
Regularization of the theory
Fractal structure of space-time

Causal Dynamical Triangulations
Geometry of 1d states and 2d configurations
CDT - generalization to higher dimensions
Quantum amplitude - partition function

Numerical results
Phase structure
Semiclassical volume distribution



CDT

Introduction

Postulates

Postulates for Quantum Gravity

I Independence of any a priori fixed background metric.
Properties of the observed universe should be derived
from a theory, and not follow from the assumption.

I Nonperturbative. It should not be a perturbative expansion
around some assumed solution of classical equations.
Such equations may appear dynamically.

I In the infrared limit it should be described by General
Relativity (as a semiclassical limit).
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Approaches

Two approaches:
I String approach: Quantum Gravity is almost a byproduct of

a multi-dimensional, supersymmetric “theory of
everything”. New objects like strings, (mem)branes.
Supersymmetry.

I Field theoretical approach: Attempt to quantize
gravitational degrees of freedom without introduction of
additional variables, extra dimensions or new symmetries.
Examples: Dynamical Triangulations (DT and CDT), Loop
Quantum Gravity.
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Introduction

Basic assumptions

Feynman path integral

Text-book example: non-relativistic point particle in one
dimension.

  
t

 

 

x
 

Amplitude of a transition between
|in〉 and |out〉 states can be
represented as a weighted sum
over all possible trajectories. On
the plot: time is discretized in steps
at , trajectories are piecewise
linear. The red line is the classical
trajectory xcl(t).
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Basic assumptions

Path integral cont’d.

To define a path integral it is natural to start with a discretized
time in steps at and to consider the discretized form of the
action. In the continuum limit at → 0 the amplitude of a
transition between |in〉 = |xi〉 and |out〉 = |xf〉 states is

G(xi,xf, t) :=
∑∫

trajectories: xi→xf

eiS[x(t)]

where S[x(t)] is a classical action.
At each (discretized) time step we have a Hilbert space of
position states {|x〉}.
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Basic assumptions

Wick rotation

Wick rotation to imaginary time t → it4 - the weight becomes
formally real (positive): eiS[x(t)] → e−SE [x(t4)]. In the discretized
version we may consider the time spacing at = αa and interpret
Wick rotation as the analytic continuation α→ iα′ in the
complex α plane.
The discretized form of the weight e−SE [x(t4)] requires the action
to be dimensionless. In effect the dependence on the
dimensionful parameter a can be absorbed by a redefinition of
the coupling constants in the action. To reintroduce the
dimensionful observables we must consider a critical behaviour
of the discretized theory.
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Basic assumptions

Statistical interpretation

Analogy to Statistical Physics

I Quantum amplitude→ partition function
I “Classical” trajectory is an average over quantum

trajectories in the statistical ensemble of trajectories.
I Discretized theory resembles a statistical theory of a

one-dimensional crystal with a lattice spacing a.
I Taking the continuum limit a→ 0 requires analyzing the

critical behaviour of a theory where the correlation length
in the dimensionless units diverges.
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Introduction

Path integral for Quantum Gravity

Path integral for Quantum Gravity
Quantum Gravity (without matter) - is a theory of quantum
geometry. By analogy we expect the spatial states of the
system to be defined as spatial geometries of the universe.
We can illustrate the evolution of a one-dimensional closed
universe on a plot below:

Joining spatial geometries
produces a space-time geometry.
Trajectory in the path integral is
represented as a space-time. In
this 2d example the sum over
trajectories becomes a (weighted)
sum over all two-dimensional
surfaces joining the |in〉 and |out〉
geometric states, separated by the
time T .
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Path integral for Quantum Gravity

Green’s function

This is the idealization of the evolution. We would like to find a
formulation, where the amplitudes like that for times T1 and T2
could be combined to describe the evolution over a time
T1 + T2.
This means that spatial states should form a complete Hilbert
space (to be defined). The combined amplitude would then be
obtained by integrating (summing) over the space of
intermediate states.
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Path integral for Quantum Gravity

Path integral for Quantum Gravity cont’d.
One would hope to make sense of the expression for the
amplitude of a transition between the two geometric states
(propagator)

G(gi,gf, t) :=
∑∫

geometries: gi→gf

dµ[g]eiS[gµν(t ′)]

So far this expression is formal and requires precisely defining
I the measure dµ[g] which should take into account the

diffeomorphism invariance
I the domain of integration over space-time geometries

(possibly restricting the topology)
I defining the Hilbert space of the spatial geometric states
I introducing a regularization satisfying the points above
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Path integral for Quantum Gravity

Wick rotation
Rotation to imaginary time t → it4 - we expect the weight factor
to be real:

eiS[g(t)] → e−SE [g(t4)]

After Wick rotation quantum amplitude becomes a weighted
sum over geometric manifolds bounded by the |in〉 and |out〉
states.

The simplest form of the action – Hilbert–Einstein action

S[g] = −1/G Curvature(g) + λVolume(g)

where G - gravitational constant, λ - cosmological constant.
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Method of Dynamical Triangulations

Dynamical Triangulations in 2d
The simplest system to be considered historically was 2d
Quantum Gravity. It can be viewed as a toy model for
higher-dimensional realizations. Historically it helped to build
up a formalism of Dynamical Triangulations (DT) and
uncovered a number of typical problems.
Assume that (after a Wick rotation) the topology of the
space-time is closed. We disregard the boundary terms in the
action - Hilbert-Einstein action becomes very simple

S[g] = −χE

κ
+ λV

where χE = 2(1− h) is the Euler characteristic of the surface (h
- is the number of handles)
κ is a dimensionless parameter, related to the gravitational
constant,
V is a volume of the space-time.
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Method of Dynamical Triangulations

DT in 2d cont’d.

The idea of DT (Dynamical Triangulations) provides a lattice
regularization of the space-time geometry. We consider
triangulations of space-time by flat equilateral triangles with the
edge a (after Wick rotation there is no difference between
spatial and time directions).
Curvature is localized in vertices (deficit angle).

(b)

x

y

δ

y

x

(a)

Deficit angle δ -
(a) positive, (b) -
negative. In other
points geometry is flat.
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Regularization of the theory

Method of triangulations
Since all triangles are equilateral the Hilbert-Einstein action for
a triangulation T simplifies

SHE (T ) = −χE (T )

κ
+ ΛN(T )

Here N(T ) is a number of triangles in a triangulation and Λ is
the bare cosmological constant.
The regularized space-time trajectory becomes a closed
simplicial manifold characterized by invariants. We assume all
edges to be equal, but a number of triangles o(v) meeting at a
common vertex v may change.
This form is coordinate independent. No over-counting, since
two different manifolds represent two different geometries. Sum
over trajectories becomes a sum over simplicial manifolds.



CDT

Introduction

Regularization of the theory

Topological restrictions - entropy
The problem of calculating the quantum amplitude of gravity is
reduced to a combinatorial problem of counting the number of
inequivalent realizations of the 2d space-time geometry
characterized by two topological invariants: Euler characteristic
χE and volume N.
Simple argument: if we do not restrict the topology of
space-time manifolds the number of inequivalent geometries
behaves as N! (factorially). As a consequence the expression

Z =
∑
T

e−SHE (T )

for the amplitude is not even Borel summable.
We restrict the class of admissible space-time topologies T to
those with the simplest (spherical) topology.
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Regularization of the theory

Topological structure of the spatial Universe

The reduction of the space-time topology is related to the
problem : what is the topology of the spatial Universe.
Question: Is the spatial Universe connected (closed) or can it
split into disconnected fragments? Topological splitting
(handles) means that our naive ideas about the topology of
space-time are wrong and that perhaps we should invent a
mechanism controlling such process.
If the amplitude is not Borel summable a theory may have
(infinitely) many non-perturbative versions.
As will be shown below even restricting the space-time topology
may not be enough to obtain a simple theory.
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Regularization of the theory

Entropy - cont’d.
Let us consider triangulations with χE = 0. The expression for a
2d quantum amplitude becomes.

Z =
∑

N

e−ΛNN (N)

where N (N) is a number of inequivalent triangulations built of
N triangles. This number (entropy) behaves as

N (N) = eΛcNNγ−3(1 + O(1/N))

where Λc is a (non-universal) bare critical cosmological
constant and γ - a universal critical exponent.
Universality means that the same typical behaviour will appear
in more complicated discretizations using polygons rather than
triangles. Theory is defined for Λ > Λc and Λeff = Λ− Λc sets
the scale for all physical observables which can be defined in a
theory.
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Regularization of the theory

Continuum limit, spatial states
Continuum limit corresponds to Λeff → 0, where the amplitude
is dominated by large N. In this limit we may reintroduce the
dimensionful parameters

Λeff = λa2, a2N ∝ V

The simplest amplitude which can be studied is a manifold with
a topology of a planar disc, with a closed one-dimensional
boundary of (integer) length k bounding the triangulated
surface built of N triangles.
The amplitude in this case has a well defined continuum limit
for Λeff → 0 (and V = Na2 fixed) with a boundary length L = ka,
where L is a physical length of the boundary. Continuum limit
corresponds to a two-dimensional conformal field theory.
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Regularization of the theory

Spatial states, time evolution

After a Wick rotation the identification of space and time
directions was lost. We may try to reintroduce these quantities
by interpreting the boundary of a disc as a possible initial
spatial state. The initial state would be characterized by the
geometry of a closed circle (polygon) with a length k and a
topology of S1. We assume that a boundary of the disc defines
the state of the Universe at a time t = 0.
We can define a distance between a point of the triangulation
and a closed loop on a triangulation as a minimal number of
steps along the edges between this point and any point of a
loop. This definition can be extended to define a distance
between loops.



CDT

Introduction

Regularization of the theory

Time evolution cont’d.

The Hilbert space of states is represented by closed loops with
an integer length k > 0. To define the elementary evolution
step in time we consider all possible ways to connect two loops
in such a way that they are separated by a unit distance
∆t = 1. If we succeed we iterate the procedure.

The amplitude for a single step 〈k1|M1|k2〉 is obtained by
summing over all manifolds with two boundaries, at a fixed
distance ∆t = 1 and weighted by a factor exp(−ΛN).
Considering all manifolds contributing to the amplitude one
realizes that the naive idea that geometric evolution is smooth
is not true.
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Fractal structure in EDT



CDT

Introduction

Fractal structure of space-time

Causality problem - baby universes

Looking at structures separated by one time step from the initial
loop we see that a generic situation corresponds to a creation
of baby universes.

t

This is independent of how precisely we
define the “time flow” in DT. It means
also that the concept of a single universe
with a well defined circular topology is
unstable against breaking into many
universes, even though the space-time
topology is spherical.

We may keep only one universe and sum over the remaining
structures but this means that in the process of evolution we
loose information about other baby universes.
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Fractal structure of space-time

Disregarding baby universes

It is possible to calculate the amplitude in such a way that we
always keep one incoming loop and one outgoing loop
(integrating out other baby universes). The price one pays is
that on a large time scale time T scales in the anomalous
(non-canonical) way as 4

√
Λeff T ≈

√
aT ∝ T/N1/4.

Conclusion We must reduce topological structures included in
a summation over space-times if we want to keep the canonical
relations between space and time in the continuum limit.
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Fractal structure of space-time

Fractal dimensions
On random geometric structures we should define what we
mean by the (averaged) dimension of a manifold. Two possible
definitions:

I Hausdorff dimension dH . For a ball with a radius r >> 1
we measure the number of points inside the ball:

〈N(r)〉 ∼ rdH

For a ball with a finite volume V we should have

〈r〉V ∝ V 1/dH

I Spectral dimension dS. We define a diffusion process on a
manifold in a pseudo-time σ. Return probability
characterizes the heat kernel of the Laplacian

〈P(σ)〉 ∝ 1/σdS/2

For a 2d space-time discussed above dH = 4, dS = 2.
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Fractal structure of space-time

Conclusions
I A sum over topologies (sum over h) is badly divergent,

since for large N the number of possible manifolds grows
factorially. In practice we have to restrict a class of
topologies to h = 1 (planar surfaces).

I For surfaces with a fixed genus h the number of possible
manifolds grows exponentially with N

N (N) ∝ eΛcNNγh−3(1 + · · · )

Theory is defined only for Λ > Λc , where

〈N〉 ∝ 1/(Λ− Λc)

.
I Spatial states with S1 topology are unstable against a

formation of baby-universes.
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Causal Dynamical Triangulations

Geometry of 1d states and 2d configurations

Causality
A solution to the problems discussed before : eliminate causal
singularities by explicitly suppressing a possibility of the baby
universe formation.
We consider only space times which admit a global time
foliation and for which a topology of the spatial geometry at a
fixed time is constant (say S1 in 2d).
We use the general idea of the Dynamical Triangulations -
space-time structures obtained by gluing together simplices -
Causal Dynamical Triangulations.
Loops in the neighboring time layers are connected by triangles
pointing up or down.

t

t+1
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Causal Dynamical Triangulations

Geometry of 1d states and 2d configurations

CDT in 1+1 dimensions

I States: Closed loops with the (integer) length k > 0. k is a
spatial volume of the Universe.

I Connecting loop states: Each link of the loop is a base of a
triangle pointing up in time (a {2,1} triangle) and a triangle
pointing down (a {1,2} triangle). Triangles are glued along
the time-like edges in all possible ways.

I Elementary single step amplitude: A sum over all ways to
connect two loops with lengths n and m using the two
types of triangles.We need n {2,1} triangles and m {1,2}
triangles. Even in 2d the number of possible ways to
connect two states is exponentially large (∝ 2n+m). We
need a factor e−Λ(n+m) with Λ > log2 to suppress the
entropy.
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Causal Dynamical Triangulations

Geometry of 1d states and 2d configurations

CDT

I Coupling constants: In 2d the only relevant coupling
constant is the cosmological constant Λeff = Λ− Λc ∝ a2.
Gravitational constant is eliminated because of a
topological identity (Euler characteristic).

I The 2d model can be analytically solved and we can study
the large N and large T limit (continuum limit Λeff → 0).

I In the continuum limit both the spatial volume of Universe
(L = ka) and the time (t = Ta) scale canonically (i.e. ∝ a).

I The continuum amplitude reproduces the 2d QG amplitude
in a proper time gauge.

I For a two-dimensional system dH = 2 and dS = 2.
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Causal Dynamical Triangulations

CDT - generalization to higher dimensions

CDT in d+1 dimensions

The model of Causal Dynamical triangulations can be easily
generalized to higher dimensions. The difference is that now
we should describe the evolution in time of a d-dimensional
spatial geometry. As before, in the path integral, we consider
only geometries admitting a global time foliation for which the
spatial topology is preserved in time. We assume that the
spatial topology of the Universe is spherical (Sd ) . The model is
regularized using the method of Dynamical Triangulations. We
assume that we may perform a Wick rotation on each
space-time configuration.
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Causal Dynamical Triangulations

CDT - generalization to higher dimensions

Hilbert space of geometric states

The Hilbert space of spatial geometric states is now much
reacher. It consists of all inequivalent d-dimensional
geometries with a spherical topology. To count these states in a
diffeomorphism-invariant way we use the idea of a
triangulation: each state is represented as a d-dimensional
simplicial manifold constructed from regular d-simplices with
the edge length as. Different triangulations correspond to
different (orthogonal) states.
Each state is the eigenstate of the spatial volume operator
(counting the number n of d-simplices). The Hilbert space of
states breaks in a natural way into subspaces with different n.
The number of states in each subspace grows exponentially
with n.
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CDT - generalization to higher dimensions

Path integral

We define the path integral by considering all possible ways to
connect a triangulation T at time t with a triangulation T ′ at
t + 1.
Consider the most interesting case d = 3, where the spatial
geometry is represented by a triangulated spherical manifold
built from regular tetrahedra. These geometric states must be
connected in the neighbouring times.

Each tetrahedron becomes a base of a
pair of {4,1} and {1,4} simplices,
pointing up or down in t . The lengths of
edges in time direction are at (may be
different than as).

t+1

t

t−1

{4,1}

{1,4}
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Causal Dynamical Triangulations

CDT - generalization to higher dimensions

Manifold construction in 4d CDT

We need two more types of simplices: {3,2} and {2,3}.

Simplices {3,2} and {2,3}
form a “layer” gluing together
states at t and t + 1.

t

t+1

(4,1)                                        (3,2)
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Causal Dynamical Triangulations

CDT - generalization to higher dimensions

Path integral
The construction presented above is used to build space-time
trajectories. A trajectory is a sequence of 3-dimensional
geometric states at integer times t , each represented as a
manifold built of n(t) regular tetrahedra, extended to a
4-dimensional simplicial manifold using the construction
presented before. Notice that a volume n(t) at a spatial slice t
is proportional to the number N{4,1}4 of simplices {4,1} (or
equivalently the number N{1,4}4 of simplices {1,4}). A large part
of the space-time volume is contained in {3,2} and {2,3}
4-simplices, necessary to close the geometry.
The spatial states at integer times are separated by the layer of
{3,2} and {2,3} simplices with a topology S3. This layer is
responsible for a transfer of information between the
neighboring three-dimensional states.
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Causal Dynamical Triangulations

CDT - generalization to higher dimensions

Manifold construction in 4d CDT cont’d.

Each four-dimensional manfold can be characterized by a set of
“global” numbers

I N{4,1}4 - number of {4,1} and {1,4} simplices.

I N{3,2}4 - number of {3,2} and {2,3} simplices.
I N0 - number of vertices (0-simplices).
I T - time period.

All other “global” numbers can be expressed as linear
combinations of these numbers because of topological
identities.
Details about the space-time geometry are contained in a local
information defining the way manifold is glued together.
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Causal Dynamical Triangulations

CDT - generalization to higher dimensions

Curvature

The trajectories will be weighted by a factor e−SHE , where SHE
is the discretized Hilbert-Einstein action

S[g] = −1/G Curvature(g) + λVolume(g)

The curvature contribution can be expressed by a sum of deficit
angles around the d − 2-dimensional hinges (triangles).
The simplicity of the geometric construction of CDT means that
the action can be expressed as a linear combination of three
“global” numbers multiplied by three bare coupling constants.
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Causal Dynamical Triangulations

Quantum amplitude - partition function

Partition function

Hilbert-Einstein action is parametrized by 3 bare parameters:
κ0, κ4 and ∆.

SHE = −(κ0 + 6∆)N0 +κ4(N{4,1}4 + N{3,2}4 ) + ∆(2N{4,1}4 + N{3,2}4 )

The model cannot be solved exactly. We are forced to study the
properties of the model using numerical methods (Monte Carlo
simulations). This means that we have to use from the start a
Wick-rotated version of the model with imaginary time. We
interpret the real weight factor e−SHE (T ) as a probability to
observe a triangulation T .
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Causal Dynamical Triangulations

Quantum amplitude - partition function

Parameters of the H-E action

Physical properties of the system are determined by values of
bare coupling constants

I κ4 − κcrit
4 (κ0,∆) - related to the average 〈N4〉.

I κ0 - related to the bare gravitational constant.
I ∆ - related to asymmetry between as and at .

In our approach we study properties of systems with finite
volumes N4 →∞, which is equivalent to κ4 → κcrit

4 .
This limit does not need to give a physically acceptable
continuum limit (case of Euclidean DT). The number of
independent triangulations as a function of N4 = N{4,1}4 + N{3,2}4
typically behaves as eκ

crit
4 N4 .
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Causal Dynamical Triangulations

Quantum amplitude - partition function

In the three-dimensional parameter space κ4 = κcrit
4 (κ0,∆)

describes a critical surface. Approaching this surface (from
above) corresponds to a large-volume limit where
N4 = N{4,1}4 + N{3,2}4 becomes large (infinite).

I Instead of analyzing the model in the critical regime
(κ4 → κcrit

4 ) we consider a sequence of fixed volume
amplitudes with N4 →∞ using the property

κ4 − κcrit
4 ∝ 1

N4

In the infinite volume limit we effectively reduce the space
of bare parameters to a set {κ0,∆}.
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Numerical results

Phase structure

Approximate phase diagram of CDT
The CDT model in 4d is analyzed using numerical Monte Carlo
methods. We find a surprisingly reach phase structure.

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

∆

κ0

A

B

Bifurcation

C

Quadruple point

Phase structure for
κ4 >≈ κcrit

4 (κ0,∆)
(infinite volume limit).

Red lines - phase transitions. Perhaps a quadruple point.
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Numerical results

Phase structure

Observables

I Numerical simulations produce space-time configurations.
They are like quantum trajectories of a particle, in general
we do not expect them to give a direct information about a
classical space-time.

I Our formulation is background independent: we do not
have any reference frame.

I It is not obvious how to define the relevant observables
telling us something about a semi-classical limit.

I As will be explained in other talks the observables we
measure are not very close to the intuition about the
classical geometry.
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Analyzing the average geometry

The basic object measured in our numerical experiments is the
distribution of the spatial volume n(t) = N{4,1}(t). This is similar
to the scale factor used in many approaches to gravity. Notice
however that in our case each value of n(t) represents a whole
space of possible geometric states with a volume n(t). The
concept of a state |n(t)〉 may be misleading, one should rather
think about a projection |n(t)〉〈n(t)|
The behavior of a typical volume distributions is very different in
different phases. The most interesting physically is the phase C
(de Sitter phase).
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Snapshot of a typical configuration in C phase

One typical configuration. Distribution of a spatial volume n(t)
as a function of (imaginary) time t looks like a quantum
fluctuation over a semi-classical background. Configuration
consists of a “stalk” of the cut-off size and a “blob”. Center of
the blob can shift. We fix the “center of mass” to be at zero time.
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Scaling in the C phase
Example of the scaling analysis in the C phase. We average
the volume distributions over independent configurations and
extract the limiting semi-classical distribution, where volume is
scaled by by a factor N3/4

4 an the time by a factor N1/4
4 . This

behaviour corresponds to the Hausdorff dimension dH = 4.
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The continuous line corresponds to f (τ) ∝ cos3(τ) (4d sphere).
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Other phases

Volume profile is different in the other phases:
I phase A is characterized by the lack of correlation between

volumes of the neighboring slices. Configurations look like
a random distribution of volume.

I Phase B is a phase where the blob collapses to a single
slice: it can be viewed as a spontaneous compactification
of the time dependence.

I In a newly discovered bifurcation phase we observe a blob,
but the scaling is different than in the phase C.

There are many other differences between the phases.
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Effective model
The semi-classical distribution of volume can be obtained in the
effective model, where we include only volume as a degree of
freedom. We can measure the effective action of the model.
Details will be given in other talks.
The effective model can be used to determine physical
parameters of the CDT model as a function of bare parameters.
They are different in different phases. The effective action in the
phase C looks like a discretization of the mini-superspace
model.
The most important (and the most difficult) problem is to
analyze the behavior of the model near phase transitions. This
is the subject of the present studies. Notice that in a 4d gravity
the gravitational coupling constant is dimensionfull. Finding a
correct continuum limit is therefore a delicate problem.
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Phase transitions

I The phase transition, which is interesting for us must be
second or higher order. At such a transition the
dimensionless correlation length of some physical
observable(s) diverges. We would like the observable to be
the curvature.

I A phase transition between A and C is first order, so it is
not a good candidate to represent continuum gravity.
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I The possible place to find a new theory is along a
transition between C and a bifurcation phase. This is the
phase with properties we still do not understand
completely. We suspect that at the phase transition we
observe a spontaneous change of the effective metric
from Lorentzian to Euclidean. The problem is currently
analyzed.

I The biggest challenge is to study the behavior of the model
near a quadruple point, which may be a candidate for the
non-perturbative fixed point of Quantum Gravity.
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Thank you
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