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CDT

<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity model based on the path integral

< The path integral trajectory of
CDT = spacetime geometry E
regularized by a triangulation
(2 types of 4-simplices)

<> Transition amplitude depends on
all admissible trajectories
(non-perturbative approach)

<> Fixed spacetime topology (5'xS3)
= causality constraint
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CDT

<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity model based on the path integral

<> We will consider pure gravity model
(G) with positive cosmological

constant (/) | | Phase C

t
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<> CDT is formulated in a coordinate ¢}
free way
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<~ Three coupling constants: k,, K,, &
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geometry system [

<> Originally three phases with 02
different geometric properties
were discovered in 4-dim case
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Effective action

<> Effective action describes quantum fluctuations of an
observable (after , integrating out” other degrees of
freedom)

<> Background geometry emerges
dynamically: subtle interplay between
bare action (Sg) and entropy of states

<> The observable: 3-volume of spatial
layers (foliation leaves of the global
proper time): V,(t)

<> It is proportional to a number of (4,1)
simplices, whose 3D faces (tetrahedra)
form a given layer: V,(t) < n,
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Effective action in Phase C

<> Phase C (de Sitter phase) has interesting semi-classical

properties (low energy limit) o
<> Hausdorff dimension: 4 S0 P el das
<> Spectral dimension: 2 = 4 6000: A — B
< Background geommetry <n> is ) / |
consistent with a 4-dim sphere = ol / \
Euclidean de Sitter universe (GR | /
with positive cosmological constant) N R S P

<> This is clasically obtained for a
homogenous and isotropic metric

<> For which the GR action takes a form
of the minisuperspace action -

1}3(02 13
0 +uV(?) NQ(t)J

3

ds’* =dt* +a*(t)d2; = V,(t) < a’(1)

S=———| dt




Effective action in Phase C

<> CDT conjecture: the effective action in Phase C is a
discretization of the minisuperspace action?
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Effective action in Phase C

<> CDT conjecture: the effective action in Phase C is a
discretization of the minisuperspace action?
<> The effective action can be analyzed " = <”t> + ént C, = <5nt5nt’>

by looking at quantum fluctuations
around the semi-classical solution
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Effective action in Phase C

<> CDT conjecture: the effective action in Phase C is a

discretization of the minisuperspace action?
<> The effective action can be analyzed ", = <”t> + 5’”5; C,p= <5nt5nt’>

by looking at quantum fluctuations
around the semi-classical solution

<> The (inverse of) covariance matrix
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Effective action in Phase C

<> CDT conjecture: the effective action in Phase C is a

discretization of the minisuperspace action!
<> The effective action can be analyzed ", = <”t> + 5’”5; C,p= <5nt5nt’>

by looking at quantum fluctuations
around the semi-classical solution

<> The (inverse of) covariance matrix

P =C1 provides information about 2
second derivatives of the effective D e ;-
action o

< The measured covariance matrixis ¢ _ lz (-1, +fin"  Jn
consistent with MS action (with T T4 (n+n,) t
reversed overall sign) ! -




Transfer matrix method

<> The transfer matrix method enables to measure the
effective action directly



Transfer matrix method

<> The transfer matrix method enables to measure the
effective action directly

<> CDT has by definition a transfer matrix
parametrized by 3-dimensional spatial
triangulations T,

Z=3(T,IM"|T,)=trM”

{0}




Transfer matrix method

<> The transfer matrix method enables to measure the

effective action directly

<> CDT has by definition a transfer matrix
parametrized by 3-dimensional spatial Sy
triangulations T,

<> Local form of the effective action in
Phase C suggests that a description by
effective transfer matrix parametrized
by spatial volume n, is also viable 7

—-— - .
f— -

-~ e o o == ™



Transfer matrix method

<> The transfer matrix method enables to measure the
effective action directly

<> CDT has by definition o transfer matrix |
parametrized by 3-dimensional spatial Ser = fz
triangulations T,

<> Local form of the effective action in S = E Lf[nt’nt 1
Phase C suggests that a description by ‘
effective transfer matrix parametrized RN
by spatial volume n, is also viable Zf = <n | M 7} | n >= trM 7}
e t e t e
<> Measurement of the transfer matrix = U
direct measurement of the eﬁecﬁve/ =" T=s ~ .
. \
Lagrangian (\ <nt M| nt+1> o exp(—Lef[nt,nm])/x

\~~ ——
__-————__—
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Transfer matrix method

<> The effective transfer matrix measured in Phase C is
consistent with minisuperspace action! |
\

<> Direct measurement of the effective
action in large volume regime \
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Transfer matrix method

<> The effective transfer matrix measured in Phase C is
consistent with minisuperspace action!

<> Direct measurement of the effective
action in large volume regime

<> The results are perfectly consistent
with the covariance matrix method
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Transfer matrix method

<> The effective transfer matrix measurea

<> Direct measurement of the effective -\
action in large volume regime

<> The results are perfectly consistent
with the covariance matrix method

<> It is possible to measure the effective
action for small volume regime
despite strong discretization effects <nlifl-n>
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Transfer matrix method

<> The effective transfer matrix measured-in Phase

consistent with minisuperspace action
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<> Direct measurement of the effective
action in large volume regime L, - 1

Cis

small vol.
correction

(n—m) +M(n+m) _)L(n+m)+'l6(n+m g

I'l n+m 2 2
<~ The results are perfectly consistent e .
with the covariance matrix method ST NS T T
< It is possible to measure the effective "o R
action for small volume regime A__| 0124002 [0.04—0.07
despite strong discretization effects < 2 - i3:lt: — -

< Small volume action is also
consistent with MS action
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Transfer matrix method

<> The effective transfer matrix measured in Phase C is
consistent with minisuperspace action!

30

<> Direct measurement of the effective | e
action in large volume regime

200+

<> The results are perfectly consistent s o}
with the covariance matrix method

<> It is possible to measure the effective

action for small volume regime -
despite strong discretization effects
< Small volume action is also .
consistent with MS action s ool
<> The transfer matrix description * |

perfectly replicates full-CDT spatial 0 b

volume results
-10-



Effective action in Phases A & B

< The transfer matrix can be used to determine the form
of the effective action in other phases ...

0.8 .
Phase C T
Sample
0.6 800()”7 configuration ;
Average from Phase A
6000 [ - )
configurations
04 ,
4000 -
<
, 2000
0.2
0 20 4 60 80 t
& -— _ | 2nd order
( ] — \\ v
Phase B L’u - .
n,
e
1 | - |
[ . g
30000 - 4
Ko
20000 - ~
10000 -

20 20 50 %0 t -11-



Effective action in Phases A & B

<> The transfer matrix can be used to determine the form
of the effective action in other phases ...

<> In Phase A the kinetic part of the L1 (n=m)  (am)” (nem
: : : =— + -
effective action vanishes ... TT| nem “( 2 ) ( 2 )
<n|M|s—n>
AN
[ \

02 1
_11_ ) 1



Effective action in Phases A & B

< The transfer matrix can be used to determine the form
of the effective action in other phases ...
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Effective action in Phases A & B

<> The transfer matrix can be used to determine the form
of the effective action in other phases ...

< In Phase A the kinetic part of the W (n+m()”3' A(”*”")]

effective action vanishes ... / \qa\ 2
<> ... and the potential part changes 433 :
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of the effective action in other phases ...
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< The transfer matrix can be used to determine the form
of the effective action in other phases ...

<> In Phase A the kinetic part of the

effective action vanishes ... L,=um”+m”)+A(n+m)

Phase A

<> ... and the potential part changes "
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Effective action in Phases A & B

<> The transfer matrix can be used to determine the form
of the effective action in other phases ...

<> In Phase A the kinetic part of the ' ( (m‘”)}}
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effective action vanishes ... . I_‘(n—-l-m)/
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<> The transfer matrix can be used to determine the form
of the effective action in other phases ...

<> In Phase A the kinetic part of the ' { (””‘”)2\}

—-—

-~

<n|MB |m>=N[n+mlexp

effective action vanishes ... R I_'(n—-i-m)/
<> ... and the potential part changes Mo =
<> Ultra-local form of the action explains ,’f\\

lack of correlations between different J A

time layers (,asymptotic silence” ?) / i \\

<> In Phase B the kinetic part of the transfer e o
matrix measured for small volumes T
resembles Phase C behaviour 1o order

-0.2 1 L 1
0 1 2 3 4
- 1 1 - Ko



Effective action in Phases A & B

<> The transfer matrix can be used to determine tfre‘form\
of the effective action in other phases ... E’

exp

] . <n|MB|m>=N[n+m]
<> In Phase A the kinetic part of the |

effective action vanishes ...

<> ... and the potential part changes

<> Ultra-local form of the action explains
lack of correlations between different
time layers (,asymptotic silence” ?)

)2\

(m—n—c[n+m]

I'(n+m) |

(m—n+c[n+m])2 }I

<> In Phase B the kinetic part of the transfer

matrix measured for small volumes
resembles Phase C behaviour

< For sufficiently large volumes one .

observes a bifurcation of the kinetic part oSt
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Effective action in Phases A & B

<> The transfer matrix can be used to determine the form

of the effective action in other phases ... (m—ntcln s ml)
<n|MB|m>=N[n+m] exp| - s -
<> In Phase A the kinetic part of the T(n+m)
effective action vanishes ... (m_,,,(fc[;fmi),z
+exp| — —-—=
<> ... and the potential part changes L'(n+m)

<> Ultra-local form of the action explains
lack of correlations between different
time layers (,asymptotic silence” ?)

<> In Phase B the kinetic part of the transfer
matrix measured for small volumes
resembles Phase C behaviour

b3 38 B E S

<> For sufficiently large volumes one .
observes a bifurcation of the kinetic part
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Phase transitions

<> ... and to study phase transitions.

<> Phase transistions should be related to

a change of the effective action . A
<> We focus on the kinetic part of the (, : e
transfer matrix O

<> The A< C phase transition is consistent
with a change of the effective action

<> The bifurcation of the kinetic part

observed in Phase B persists in some -
region of parameter space originally
denoted Phase C
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Phase transitions

<> ... and to study phase transitions.

<> Phase transistions should be related to
a change of the effective action

<> We focus on the kinetic part of the
transfer matrix

<> The A< C phase transition is consistent
with a change of the effective action

<> The bifurcation of the kinetic part
observed in Phase B persists in some
region of parameter space originally
denoted Phase C

<> A new , bifurcation” phase exists

between Phases B & C
_12_
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Bifurcation phase
<> The new phase separating phases B & C is related to a

bifurcation of the effective action ..
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Bifurcation phase

<> The new phase separating phases B & C is related to a

bifurcation of the effective action ..

<> Average volume profile in the new
phase resembles the profile observed
in Phase C ...
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Bifurcation phase

< The new phase separating phases B & C is related to a
bifurcation of the effective action ..

< Average volume profile in the new N _
phase resembles the profile observed o a
in Phase C ... o S
<> ... but the profile is shrinking in time b
direction ...
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Bifurcation phase

< The new phase separating phases B & C is related to a
bifurcation of the effective action ..

0.6 +

< Average volume profile in the new N _
phase resembles the profile observed 4 b

0.2

in Ph ase C coe Biflll‘(‘atii)l?'""u\w

0

<> ... but the profile is shrinking in time
direction ...

<> ... which is well explained by the
bifurcation of the transfer matrix
kinetic term

<n|MB\m>=N[n+m] I“tn+m)

-13-
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Bifurcation phase

<>... resulting from geometry considerably different than

inside Phase C
0.6 |
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<>... resulting from geometry considerably different than
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Bifurcation phase

<>... resulting from geometry considerably different than
inside Phase C

0.6 +

<> Infinite Hausdorff dimension?

<> Spectral dimension >4 and growing
(to infinity ?) with growing volume o

04 | P ~. C

<> This suggests high connectivity
between the building blocks :
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Signature change

<> Bifurcation of the effective action near phase transition
can be interpretted as a spontaneous signature change
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Conclusions

<> Transfer matrix approach allows one to measure the
effective action directly

<> The action inside Phase C is well described by the MS model

<> The transfer matrix method gives access to effective action
in other phases

<> In Phase A the kinetic term vanishes = possible relation to
asymptotic silence ?

<> In Phase B one observes a bifurcation of the kinetic term

<> New Bifurcation Phase with nontrivial geometric properties
was discovered

<> New phase transition might be related to signature change
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