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Quantum gravity

Standard model couplings are dimensionless - Gravitational coupling
is DIMENSIONFUL! (In d-dimensions [GN ] = 2− d)

Perturbative expansion

Perturbative QFT treatment of gravity in d-dimensions with loop order L
scale with momentum p as (S. Weinberg, (1979).)∫

pA−[GN ]Ldp (1)

Divergent for [GN ] < 0!

Therefore, although gravity can be successfully formulated as an
EFT at low energies (J.Donoghue, arXiv/9512024v1.),
uncontrollable divergences appear in the high-energy perturbative
expansion Goroff + Sagnotti ′86�� ��Gravity as a perturbative QFT is NOT renormalizable!
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Many approaches; few similarities

Lack of experimental data at Planck scales → surplus of approaches
to QG

Perhaps it is wise to look for similarities, e.g. thermodynamic nature

of black holes...
�� ��+ dimensional reduction
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Dimensional reduction in CDT

The spectral dimension DS defines the effective dimension of a fractal geometry
via a diffusion process

DS is related to the probability of return, Pr (σ), for a random walk over an
ensemble of triangulations after σ diffusion steps

The probability of return to the origin in asymptotically flat space is given by

Pr (σ) =
1

σd/2
. (2)

Extract the spectral dimension DS by taking the logarithmic derivative with
respect to the diffusion time, giving

DS = −2
d log〈Pr (σ)〉

d logσ
. (3)
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Dimensional reduction in CDT

DS(IR) = 4.02± 0.10,�� ��DS(UV ) = 1.80± 0.25
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DS(IR) = 4.05± 0.17,�� ��DS(UV ) = 1.970± 0.27

DS(σ) = a− b
c+σ
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Dimensional reduction in Horava-Lifshitz gravity

Anisotropic scaling of space and time in UV - Lorentz violating by
construction

Seems to have some connection to CDT... phase diagram
arXiv:1002.3298 and spectral dimension arXiv:0902.3657

In D + 1-dimensional spacetime with anisotropic scaling exponent z
spectral dimension is found to be

DS = 1 +
D

z
. (4)

z = 1 in IR, z = 3 in UV.�� ��DS(IR) = 4, DS(UV ) = 2.
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Dimensional reduction in asymptotic safety

Gravity is pertubatively nonrenormalizable - what about
nonperturbatively?
Growing body of evidence for UV fixed point

G
N

Λ

At fixed point scaling of the effective graviton propagator
dynamically reduces: arXiv:0108040v2

1 Classical regime (IR)

G (x , y) ∝ 1

|x − y |d−2
(5)

2 UV fixed point regime (UV)

G (x , y) ∝ ln(µ|x − y |) (6)
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Dimensional reduction in asymptotic safety

courtesy of Reuter + Saueressig
arXiv:1110.5224v1

DS(IR) = 4,�� ��DS(UV ) = 2
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Dimensional reduction in loop quantum gravity

Area spectrum A ∼ l2
j for large areas, but A ∼ lp lj for small areas

Modesto (L.Modesto, arXiv/0812.2214.) calculated spectral
dimension in LQG by analysing area spectrum at varying length
scales

�� ��DS(IR) = 4, DS(UV ) = 2.
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Dimensional reduction in string theory (and other hints)

String theory

High temperature gas of strings has free energy that behaves similar
to a 2D QFT F

VT ∼ T

Spectral dimension in string theory implies dimensional reduction
(G .Calcagni , arXiv/1310.4957v2.)

other hints

Causal sets - Myrheim-Meyer dimension for a random causal set is
∼ 2.38 (although DS may actually increase...)

Strong-coupling limit (lp →∞) of Wheeler DeWitt equation implies
2−dimensional behaviour (Carlip)

If dimensional reduction is real we must accept some rather radical
consquences:

1 Relativistic symmetries are at the very least deformed
2 Possible to break Lorentz invariance
3 Gravitational waves cannot propagate
4

�� ��Superluminal motion is possible
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Superluminality

As reported in
Amelino − Camelia,Phys.Rev .,D87(12) : 123532, 2013 most
approaches describing dimensional reduction of the spectral
dimension imply dispersion relations,

E

p
= cm =

√
1 + (λp)2γ

. (7)

In T .Sotiriou, phys.Rev .,D84 : 104018(2011) an expression relating
the spectal dimension to the ratio of the phase and group velocity,
independent of any particular approach to QG, was derived.

DS = 1 + d
vphase
vgroup

+ ... (8)

For E.M waves in a vacuum cm = vgroup/vphase = 1

Clearly, for any degree of dimensional reduction DS < 4 we have
cm > 1�� ��Dimensional reduction implies superluminality
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Superluminality in CDT

The canonical point in the de Sitter phase of CDT has a scale
dependent spectral dimension of the form (supported by analytical
multigraph approaches),

DS = a− b

c + σ
. (9)

CDT simulations yield a fit with a = 4.06, b = 135 and c = 67.
Coumbe + Jurkiewicz , JHEP1503(2015)151

Integrating DS gives a return probability

Pr =
1

σa/2
(
1 + c

σ

) b
2c

. (10)

as found in Coumbe + Jurkiewicz , JHEP1503(2015)151 and
AJL,Phys.Rev .Lett.95.171301(2005) a ≈ 4 and b

2c ≈ 1. So to a
good approximation one finds

Pr ≈
1

σ2 + cσ
. (11)
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superluminality in CDT

Substituting the functional form for DS into the expression
DS = 1 + d

vphase
vgroup

gives a modified speed of light cm of

cm =
vgroup
vphase

=
d

a− b
c+σ

− 1. (12)

Using the fit parameters determined from CDT calculations
a = 4.06, b = 135 and c = 67 we can plot the modified speed of
light cm predicted by dimensional reduction in CDT
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Numerical evidence for superluminality in CDT

Test particle hops between adjacent simplices

Unique label for combinatorial triangulations → can track the diffusion process

Information about how path length varies with distance scale → define an
effective velocity

CDT defines an ensemble of triangulations with space-like hypersurfaces
separated by time intervals tN

�� ��vd = Cσ
td
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Numerical evidence for superluminality in CDT
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Averaged over 1000 independent diffusions at canonical point. C = 0.18 such
that extrapolates to cm = 1 as σ →∞
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An alternative derivation of superluminality in CDT
(Mielczarek) arXiv:1503.08794v1

Assumes fixed DS(IR) = 4 and parameterises DS(UV ) = 2 + ε,
giving

DS = 4− 2− ε
1 + σ/c

(13)

Converts return probability into momentum via inverse Laplace
transform obtaining approximate dispersion relations

ΩIR(p) ≈ p +
E∗
15

(2− ε)
(

p

E∗

)3

,ΩUV (p) ≈ 2

3
E∗

p

E∗

3−3ε
(14)

�



�
	vgr = 1 + 3

15 (2− ε)
(

E
E∗

)2
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An alternative derivation of superluminality in CDT
(Mielczarek) arXiv:1503.08794v1

The fit parameter c in the fit function a− b/(c + σ) can be related
to the energy scale of dimensional reduction via E∗ = 1√

c

If we assume that energy scale E = 1/∆x then we can make a direct
comparison between cm and the independently derived vgr
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Lorentz invariance and astronomical observations

If c(E ,∆x) > 1 can we observe it?

Fermi GBM/LAT collaboration using the Fermi Gamma-ray space
telescope has severly constrained (linear) LIV even E > EP (99%CL)

How do we reconcile superluminality implied by dimensional
reduction with Lorentz invariance and the empirical data?�



�
	Quantum gravity is missing something...
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Fractal paths

According to Feynman and Hibbs...

“quantum mechanical paths are zig-zag lines, which are no-where
differentiable, exhibiting self-similarity when viewed at different length
scales′′

Abbott and Wise have shown that...

Quantum mechanical paths are fractals whose length depends on the
measurement resolution

Do diffusing particles in CDT
behave in a similar way?
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Path length

If diffusion paths in CDT behave similar to fractal QM paths, they must be scale
dependent, parameterise by Γ(σ)

What function Γ(σ) rescales the path length σ when no DR (Pr = σ−2) to give
DR found in CDT ( 1

σ2+cσ
)?

1

Γ2σ2
=

1

σ2 + cσ
, (15)

giving

Γ =

√
1 +

c

σ
(16)

Scale dependent path lengths explain why cm > c

speed =
PathLength

time
=

Γ∆l

∆t
(17)
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Time dilation

How do we preserve a constant speed of light? Simple: we adjust time.

∆t ′ = γ∆t Small resolutionLarge resolution

∆t ′ = Γ∆t

Γ =
√

1 + c
σ

. As suggested by AJL c = AGN = AL2
p . Since σ = ∆x2 we get,

Γ =

√
1 +

AL2
P

∆x2
(18)�� ��Time dilates as a function of relative scale according to Γ
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A dual description?

Hausdorff introduced a new definition of length 〈L〉 that is independent of the
measurement resolution ∆x via a rescaling by the number of spatial Hausdorff
dimensions dH

〈L〉 = 〈l〉 (∆x)dH−1 . (19)

Ratio of invariant Hausdorff length 〈L〉 and variable length 〈l〉 is 1/Γ, so that

〈L〉
〈l〉

=
1

Γ
= (∆x)dH−1 . (20)

Giving the Hausdorff dimension of CDT diffusion paths

dH =
ln (1/Γ)

ln (∆x)
+ 1. (21)
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Temporal Hausdorff dimension

Most DR of spectral dimension can be derived from dispersion relations of the
type

E2 = p2
(

1 + (λp)2γ
)
. (22)

From this modified dispersion relation we obtain a modified speed of light cm
given by

cm =
E

p
=

√
1 + (λp)2γ . (23)

In a spacetime with (dH + tH) Hausdorff dimensions one finds the general form
for the spectral dimension,

DS = tH +
dH

1 + γ
. (24)

Eq. (24) independent when γ = 0, and by using Eq. (21) we obtain

tH = 1−
ln (1/Γ)

ln (∆x)
(25)
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Scale dependent Wick rotation
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Spatial dimension transforming into a temporal dimension�� ��Scale dependent Wick rotation?
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Conclusions

1 Reviewed evidence for dimensional reduction

2 DR in CDT implies superluminality (2 independent derivations)

3 Numerical evidence for superluminality in CDT (data closely
matches both predictions)

4 To maintain a constant speed of light�� ��time must dilate as a function of distance scale

5 Determined dH and tH for CDT diffusion paths — dual picture via
scale dependent Wick rotation?

Thanks for listening!
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