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Proposals for a symmetry reduced quantum theory in LQG

Mini / midi-superspace quantisation
I LQC [Bojowald ’99-; Ashtekar, Bojowald, Lewandowski ’03; ...]

I Schwarzschild black hole [Kastrup, Thiemann ’93; Kuchǎr ’94, Gambini, Pullin ’13]

I Spherical symmetry [Bojowald, Kastrup ’99, ..., Bojowald, Swiderski ’04, ...]

I More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo . . . ]

Approximately symmetric spin networks
I Weave states [Ashtekar, Rovelli, Smolin ’92; Bombelli ’00]

I Spinfoam cosmology [Bianchi, Rovelli, Vidotto ’10-; Kisielowski, Lewandowski, Puchta ’12]

I Canonical Bianchi I, reduced states [Alesci, Cianfrani ’12-; Paw lowski ’14]

Study of symmetric connections
I Quantisation ↔ reduction [Bojowald ’04; Engle ’05; Hanusch ’13]

I Embedding of states [Engle ’07; Brunnemann, Fleischhack ’07; Fleischhack ’10]

Condensate states
I GFT [Gielen, Oriti, Sindoni ’13-; Calcagni ’14, ...]

Group averaging w.r.t. symmetry generator at quantum level
I Spherical symmetry [NB, Lewandowski, Świeżewski ’14]

Code symmetry as f (p, q) = 0, impose ̂f (p, q) |Ψ〉sym = 0 ←
�� ��this talk

I Bianchi I models [NB ’14]

I Spherical symmetry [NB, Lewandowski, Świeżewski ’14]
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General strategy for the symmetry reduction

1 Suitable classical starting point

I Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
I Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
I Find new connection variables on Γred (not Ashtekar-Barbero variables)

2 Identification of constraints imposed by symmetry reduction

I Find phase space functions fi (p, q) = 0 in the symmetric subspace
I fi = 0 may be a first or second class set of constraints
I Later, choose first class subset via gauge unfixing (→ Dirac quantisation)

3 Quantise the reduced phase space via LQG techniques

I At this point, still full GR (if accessible by the gauge fixing)
I At this point, no (full) spatial diffeomorphism constraint at quantum level

4 Impose reduction conditions fi = 0 as operator equations: f̂i |Ψ〉sym = 0

I Find subspace of quantum reduced states |Ψ〉sym

I Find observables Ôsym w.r.t. reduction constraints: [Ôsym, f̂i ] = 0

5 Relate observables Ôsym to mini- / midisuperspace parameters

I Map observables
I Study dynamics
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Classical preparations I: Phase space

Gauge fixing to obtain suitable coordinates

1 Start with ADM phase space {qab(σ),Pcd(σ′)} = δ(3)(σ, σ′)δc(aδ
d
b)

2 Impose diagonal metric gauge qa 6=b = 0 ⇔ q = diag(qxx , qyy , qzz)

3 Gauge fixes the spatial diffeomorphism constraint NaCa = −2Na∇bP
b
a = 0

(up to reduced spatial diffeomorphisms with shift vector ~N = (Nx (x),Ny (y),Nz (z)))

4 Coordinatise the reduced phase space via qxx , qyy , qzz ,P
xx ,Pyy ,Pzz

5 Solve Ca = 0 for Pa 6=b ⇒ Pa 6=b(qaa,P
bb) ⇒ insert in Hamiltonian

Choose connection type variables

1 Define eaea = qaa, eae
a = 1, without summation, and E a =

√
det qea

2 Define Ka = Kabe
b with Kab being the extrinsic curvature constructed form Pab

3 Compute new Poisson brackets: {Ka(σ),E b(σ′)} = δ(3)(σ, σ′)δba

4 Ka, E b are like Ashtekar-Barbero variables without internal indices
⇒ Abelian gauge theory (Poisson bracket of Maxwell theory)

At this stage, only Hamiltonian constraint and reduced spatial diffeomorphisms left.
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Classical preparations II: Consequences of symmetry
T3 Bianchi I universe : 3 scale factors & 3 momenta: qab(σ) = diag(qxx , qyy , qzz)

Constraints compatible with a Bianchi I universe

1 qab and Pab are diagonal in suitable coordinates

⇒ impose Pa 6=b(qaa,P
bb) = Pa 6=b(Ka,E

b) = 0

2 E a and Ka are independent of the spatial coordinate in suitable coordinates

⇒ impose ∂aKb = 0 = ∂aeb

Choose first class subset to impose as strong operator equations
Without proof here, see paper for details: A maximal first class subset is

1 All spatial diffeomorphisms: C̃a[Na] =
∫

Σ
d3σ E aL~NKa = 0 (incorporates also reduced ones)

2 Abelian Gauß law: G [ω] =
∫

Σ
d3σ ω ∂aE

a = 0

Result:
Direct consequences of a Bianchi I reduction can be imposed as spatial diffeomorphisms
and a Gauß law on the (quantised) reduced phase space (as operator equations).
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Classical preparations III: Summary

Phase space: (full GR admitting diagonal metric gauge)

1 Ka(σ), E b(σ) are 3 + 3 canonical variables per spatial point σ

2 Remaining constraints are

1 reduced spatial diffeomorphisms (preserving the diagonal gauge)
2 Hamiltonian constraint

Direct consequences of a reduction to Bianchi I are

1 All spatial diffeomorphisms: C̃a[Na] =
∫

Σ
d3σ E aL~NKa = 0

2 Abelian Gauß law: G [ω] =
∫

Σ
d3σ ω ∂aE

a = 0

Strategy:

1 Quantise full phase space via LQG techniques

2 Impose symmetry reduction by imposing C̃a = 0 = G at the quantum level

Norbert Bodendorfer (Univ. of Warsaw) Symmetry reductions in LQG QGiC4 10 / 20
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Quantisation I: Full theory in diagonal gauge

Standard LQG type quantisation

1 Compute holonomies hλγ (K) := exp
(
iλ
∫
γ
Ka ds

a
)

and fluxes E(S) =
∫
S
E a d2sa

γ path, S surface, λ ∈ Z for U(1), or λ ∈ R for RBohr see e.g. [Corichi, Krasnov ’97] for U(1)

2 Define positive linear Ashtekar-Lewandowski functional on holonomy-flux algebra

3 Representation follows from the GNS construction: Hilbertspace = L2(Ā, dµAL)
Ā = generalised U(1) or RBohr connections

Remarks

For RBohr: limR→∞
1

2R

∫ R

−R
dx f (x) =

∫
RBohr

dµH f (x) provides normalised and

translation invariant Haar measure ⇒ per edge: H = L2(RBohr, dµH)

Choosing λ ∈ Z over λ ∈ R (i.e. compactifying
∫
γ
Kads

a) has no justification at

this stage (also not later)
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Quantisation II: Area operator

Area operator for Abelian theory

A(S) = |E(S)| = |
∫
S
E a d2sa| is analogous to (absolute value of) electric flux

Important difference to non-Abelian, e.g. SU(2), area op.
∫
S

√
|E iEi |:

I - Absolute value is outside of the integral
I - E(S) does not detect closed contractible loops for closed S

While one can also define “non-Abelian like” area operator here, the Abelian one will turn out to be most useful.

I ()
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Â(S) measures intersection number Nint × rep. label: Â(S)
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Quantisation III: Imposing the symmetry reduction

Reduction constraints are very familiar from full theory

1 All spatial diffeomorphisms: C̃a[Na] =
∫

Σ
d3σ E aL~NKa = 0

2 Abelian Gauß law: G [ω] =
∫

Σ
d3σ ω ∂aE

a = 0

⇒ spatially diffeomorphism invariant and gauge invariant charge (spin) networks!

Simplest choice of quantum state
Consider spin network made from 3 Wilson loops
wrapping around T1

x ,T1
y ,T1

z , meeting in a single
vertex v . [c.f. Husain ’91, ’05]

Mapping to Bianchi I LQC states of
[Ashtekar, Wilson-Ewing ’09]

|λx , λy , λz〉 7→ |p1, p2, p3〉

Observables w.r.t. the reduction constraints

1 Area of closed surfaces → 3 non-trivial areas A(T2
x),A(T2

y ),A(T2
z)

2 Diff-equiv. classes of Wilson loops → 3 non-trivial closed loops along T1
x ,T1

y ,T1
z
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Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

Evaluate at qa 6=b = 0 because of gauge fixing

Discard Pa 6=b, ∂aeb, and ∂aKb terms because of reduction constraints

⇒ H[N] =
∫
d3σN (exKyKz + eyKzKx + ezKxKy ) looks like in Bianchi I cosmology

Regularise constraint operator (graph preserving)

Substitute ea either by fluxes or Thiemann’s trick ea = 2{Ka,V }
Approximate Ka via holonomies:

∫
Kads

a ≈ sin(λ
∫
Kads

a)/λ

Choice of λ is crucial! U(1) vs. RBohr

U(1) choice: λ = 1 gives best approximation
⇒ “old” LQC dynamics [Ashtekar, Bojowald, Lewandowski ’03]

RBohr allows arbitrarily small λ ∈ R for better approximation.
“improved” LQC choice: 1/λx =

√
|E yE z/E x | = size of universe in x-direction

⇒ “new” LQC dynamics [Ashtekar, Pawlowski, Singh ’06; Ashtekar, Wilson-Ewing ’09]
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Classical preparations for reduction to spherical symmetry

ADM phase space in radial gauge (without details here)

1 Start with ADM phase space

2 Define adapted coordinate system
[Duch, Kamiński, Lewandowski, Świeżewski ’14]

3 Impose radial gauge qra = δra

4 Express qAB ,P
AB via�� ��SU(2) connection variables Ai

A, EB
j

A, B = θ, φ, {Ai
A(σ), EB

j (σ′)} = δ(3)(σ, σ′)δBA δ
i
j

Ai
A, E

B
j = variables of 3d gravity, with spatial slice S2

r

5 Solve Ca = 0 for P rr ,P rA ⇒ P ra(Ai
A,E

B
j )

⇒ insert in Hamiltonian

(r , θ, φ)↔ σ = expσ0
(x I eI )

eI = specific frame at σ0, I = 1, 2, 3

x I = local “cartesian” coordinates

x I ↔ r, θ, φ spherical coordinates

S2
r = “spheres” of constant geodesic distance r

Find conditions compatible with spherical symmetry

P rA = 0 ⇔ generator of all spatial diffeomorphisms preserving all S2
r

(Follows form non-existence of non-zero spherically symmetric vector field on S2)

Impose spherical symmetry as invariance under S2
r -preserving diffeomorphisms.

(These are active diffeomorphisms with respect to the (r, θ, φ) coordinate system)
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Impose spherical symmetry as invariance under S2
r -preserving diffeomorphisms.

(These are active diffeomorphisms with respect to the (r, θ, φ) coordinate system)
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Classical preparations for reduction to spherical symmetry
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1 Start with ADM phase space

2 Define adapted coordinate system
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Quantisation and reduction to spherical symmetry

Perform standard LQG-type quantisation (roughly similar to lattice field theory)

1 SU(2) gauge theory with holonomies restricted to lie in an S2
r

⇒ Quantum states (generalised Wilson loops) have support on different S2
r

2 Reduction constraints lead to spatially diffeomorphism invariance on each S2
r

(Quantum states “diffeomorphism averaged” over the S2
r )

Observables w.r.t. the reduction constraints

1 Areas of the S2
r → 4πR(r)2 :=

∫
S2
r
d2x
√

det qAB

2 Averaged trace of momenta → PR(r) := 2
R(r)

∫
S2
r
d2x PABqAB

(+ all other S2
r -preserving diffeomorphism invariant observables. ⇒ more than in classically reduced theory!)

What about dynamics?
More challenging than for Bianchi I, ongoing work with A. Zipfel. First steps

Map states in classically reduced → quantum reduced theory

Compute quantum algebra [R̂(r), P̂R(r ′)] from full theory
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Conclusion: Proposed reduction programme successful
1 Suitable classical starting point

I Bianchi I: ADM in diagonal metric gauge
I Sph. sym.: ADM in radial gauge

2 Identification of constraints imposed by symmetry reduction
I Bianchi I: all spatial diffeomorphisms and Abelian Gauß law
I Sph. sym.: S2

r -preserving diffeomorphisms (Gauß law from variable choice)

3 Quantise the reduced phase space via LQG techniques
I Bianchi I: Abelian gauge theory
I Sph. sym.: SU(2) gauge theory with Wilson loops (graphs) in S2

r

4 Impose reduction conditions as operator equations
I Bianchi I: spatial diffeomorphism invariance and gauge invariance
I Sph. sym.: S2

r -preserving spatial diffeomorphism invariance (and gauge invariance)

5 Relate observables w.r.t. reduction constraints to mini- / midisuperspace
I Bianchi I: three areas and conjugate momenta
I Sph. sym.: R(r) and PR(r)

6 Future work: perturbations to Bianchi I, coarse graining, spherical collapse...

Thank you for your attention!
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