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Introduction
Evidence for the existence of cosmological singularity

observational cosmology:
the Universe has been expanding for nearly 14 billion years
(emerged from a state with extremely high energy densities
of physical fields)
theoretical cosmology:
almost all known general relativity models of the Universe
(Lemaître, Kasner, Friedmann, Bianchi, Szekeres, ...)
predict the existence of cosmological singularities (diverging
gravitational and matter field invariants, incomplete geodesics)
Hawking and Penrose theorems:
our universe must have been singular a finite time ago
(geodesic incompleteness)

Existence of singularities means that classical GR is incomplete.
Expectation: quantization may heal the singularities.
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Introduction (cont)

Hypothesis: the Universe was in a quantum phase a finite time ago.

Some questions concerning quantum phase of the Universe:

What is the energy scale?
What is the mechanism of the transition:
quantum phase � classical phase?
How to relate quantum theory with cosmic observations?

I What is the origin of inflation?
I What is the structure of tiny fluctuations visible in CMB?
I What is the spectrum of primordial gravitational waves?

Suppose the notion of time is well defined in quantum phase:
I How long had the quantum phase lasted?
I What was before the quantum phase?
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Introduction (cont)

Remark: I will not address the quantum gravity called CDT.

Canonical quantization based on the Holst action and loop
geometry

I Dirac’s approach := ‘first quantize then impose constraints’
I RPS approach := ‘first solve constraints then quantize’

Hybrid quantization: mix of coherent states and canonical
methods based on the Hilbert-Einstein action
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Quantum FRW model: summary of results obtained
within RPS LQC approach

Cosmic singularity problem of FRW model can be resolved:
classical big bang −→ quantum big bounce
Evolution of quantum phase can be described in terms of
self-adjoint physical (true) Hamiltonian

I expectation values of quantum variables coincide
with corresponding classical variables

I Heisenberg’s uncertainty relation is perfectly satisfied
during quantum evolution of universe.

The FRW model underlies the standard model of cosmology that
is successfully used to describe available data of observational
cosmology.

However, we cannot be happy with classical/quantum FRW.
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Belinskii-Khalatnikov-Lifshitz (BKL) scenario
FRW metric is dynamically unstable in the evolution towards
the singularity (breaking of isotropy)1

Dynamics of anisotropic models like Bianchi VIII and Bianchi IX
has been analyzed to get insight into the dynamics of spacetime
near the singularity2

BKL scenario/conjecture is generic ‘solution’ to GR near CS 3

I corresponds to non-zero measure subset of all initial conditions
I is stable against perturbation of initial conditions

support for BKL from numerical simulations of the approach to
singularity4

analytic support for BKL obtained within Hubble-normalized
dynamical system aproach5

1E. M. Lifshitz and I. M. Khalatnikov, Adv. Phys. 12, 185 (1963)
2V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 19, 525 (1970)
3V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 31, 639 (1982)
4D. Garfinkle, Phys. Rev. Lett. 93, 161101 (2004).
5J. M. Heinzle and C. Uggla, Class. Quantum Grav. 26 (2009) 075016
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Challenge

BKL in string theory6

I appears in the low energy limits of bosonic sectors of all five types
of superstring models

I Lorenzian hyperbolic Kac-Moody algebra underlies asymptotic
structure of spacetime near cosmological singularity

Big challenge: quantization of BKL scenario.

Application of non-singular quantum BKL
realistic model of the very early Universe
model resolving the singularity problem of black holes
may help in construction of theory unifying gravitation
and quantum physics.

6T. Damour, M. Henneaux and H. Nicolai, Class. Quantum Grav. 20 (2003) R145
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The Bianchi IX model:

Dynamics of Bianchi IX, near the singularity, is the best prototype
for the BKL scenario7

Questions to be answered:
I What happens to the classical singularity of BIX at the quantum

level?
I What happens to the chaotic dynamics of BIX at the quantum level?
I What is the generation of primordial GW for classical/quantum BIX?

Successful quantization of the Bianchi IX model would open door
to the quantization of the BKL scenario.

7V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, “Oscillatory approach to a
singular point in the relativistic cosmology”, Adv. Phys. 19 (1970) 525.
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Metric of the Bianchi IX model

The general form of a line element of the Bianchi IX model, in the
synchronous reference system, reads:

ds2 = dt2 − γab(t)ea
αeb

βdxαdxβ, (1)

where a,b, . . . run from 1 to 3 and label frame vectors; α, β, . . . take
values 1,2,3 and concern space coordinates, and where γab is a
spatial metric.
The homogeneity of the Bianchi IX model means that the three
independent differential 1-forms ea

αdxα are invariant under the
transformations of the isometry group of the Bianchi IX model.
The cosmological time variable t is redefined as follows:

dt =
√
γ dτ, γ := det [γab] (2)

where γ is the volume density, and γ → 0 denotes the singularity.
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Equations of motion

Near the cosmological singularity one can assume8

the stress-energy tensor components can be ignored
the Ricci tensor components R0

a have negligible influence
on the dynamics
the anisotropy of space may grow without bound

which leads to enormous simplification of the mathematical form
of the dynamics.

8V. A. Belinskii, I. M. Khalatnikov and M. P. Ryan, “The oscillatory regime near the
singularity in Bianchi-type IX universes”, Preprint order 469 (1971), Landau Institute
for Theoretical Physics, Moscow (unpublished); published as sections 1 and 2 in: M. P.
Ryan, Ann. Phys. 70 (1971) 301; V. A. Belinski, “On the cosmological singularity,” Int.
J. Mod. Phys. D 23, 1430016 (2014)
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Equations of motion (cont)

The asymptotic form (near the cosmological singularity) of the
dynamical equations of general Bianchi IX model reads:

d2 ln a
dτ2 =

b
a
− a2,

d2 ln b
dτ2 = a2 − b

a
+

c
b
,

d2 ln c
dτ2 = a2 − c

b
, (3)

where a = a(τ), b = b(τ), c = c(τ) are directional scale factors.

The solutions to (3) must satisfy the constraint:

d ln a
dτ

d ln b
dτ

+
d ln a

dτ
d ln c

dτ
+

d ln b
dτ

d ln c
dτ

= a2 +
b
a

+
c
b
. (4)
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State of asymptotic silence9

Figure: Collapse of the light cones while approaching the state of asymptotic
silence.

Asymptotic silence (locality conjecture)
characterized by causal disconnection of space points at large
curvature of spacetime (sector of classical BIX)
expected to have quantum counterpart in quantum gravity at large
energy densities (sector of quantum BIX)

9figure done by J Mielczarek
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Lagrangian and Hamiltonian
Eq (3) can be obtained from the Lagrangian equations of motion
with L in the form:

L := ẋ1ẋ2 + ẋ1ẋ3 + ẋ2ẋ3 + exp(2x1) + exp(x2 − x1) + exp(x3 − x2). (5)

The momenta, pI := ∂L/∂ẋI , are:

p1 = ẋ2 + ẋ3, p2 = ẋ1 + ẋ3, p3 = ẋ1 + ẋ2. (6)

The Hamiltonian of the system:

H := pI ẋI − L =
1
2

(p1p2 + p1p3 + p2p3) (7)

−1
4

(p2
1 + p2

2 + p2
3)− exp(2x1)− exp(x2 − x1)− exp(x3 − x2),

which due to (6) and (4) leads to the dynamical constraint:

H = 0. (8)
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Hamilton’s equations

The Hamilton equations have the following explicit form:

ẋ1 =
1
2

(−p1 + p2 + p3), (9)

ẋ2 =
1
2

(p1 − p2 + p3), (10)

ẋ3 =
1
2

(p1 + p2 − p3), (11)

ṗ1 = 2 exp(2x1)− exp(x2 − x1), (12)
ṗ2 = exp(x2 − x1)− exp(x3 − x2), (13)
ṗ3 = exp(x3 − x2), (14)
H = 0. (15)

Analytical solution to this 6-dimensional nonlinear coupled system of
equations are unknown.
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ẋ3 =
1
2

(p1 + p2 − p3), (11)
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Dynamical systems method

The local geometry of the phase space is characterized by the
nature and position of its critical points. These points are locations
where the derivatives of all the dynamical variables vanish.
The set of all critical points and their characteristic, given by the
properties of the Jacobian matrix of the linearized equations at
those points, may provide a qualitative description of a given
dynamical system.
The above situation is specific to the case when a fixed point is of
the hyperbolic type. In the case of the nonhyperbolic fixed point,
linearized vector field at the fixed point cannot be used to specify
local properties of the phase space. Nearby points may have
completely different neighborhood of orbits.
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Dynamical systems analysis (cont)

The set of critical points SB is found to be:

SB : = {(x1, x2, x3,p1,p2,p3) ∈ R̄6 | (x1 → −∞, x2 → −∞, x3 → −∞)

∧(x3 < x2 < x1 < 0); p1 = 0 = p2 = p3}, (16)

where R̄ := R ∪ {−∞,+∞}.

The characteristic polynomial associated with Jacobian J is:
P(λ) = λ6, so the eigenvalues are the following: (0,0,0,0,0,0) .

Since real parts of all eigenvalues of the Jacobian are equal to zero,
the set SB consists of nonhyperbolic critical points.
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Dynamical systems analysis (cont)

Summary:
We are dealing with the nonhyperbolic type of critical points. Thus,
getting insight into the structure of the space of orbits near such
points requires an examination of the exact form of the vector field.
The phase space is higher dimensional.
The set of critical points SB is not a set of isolated points, but
a 3-dimensional continuous subspace of R̄6.

Intriguing question10:
What is the relationship between higher dimensional space
of nonhyperbolic critical points and chaotic dynamics?

10E. Czuchry and W.P., arXiv:1409.2206
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Hamiltonian structure on physical phase space11

We turn our system (9)-(14) with Hamiltonian constraint, H = 0, into
a new dynamical system with Hamiltonian to be a generator of an
evolution. We call it a physical (true) Hamiltonian. To achieve that
we should transform canonically the symplectic 2-form
ω :=

∑3
k=1

(
dxk ∧ dpk

)
of kinematical phase space into canonical

2-form, Ω := ω|H=0
, defined in physical phase space.

The Hamiltonian structure in the physical phase space is defined
by the factorization:

Ω =
2∑

α=1

(
dqα ∧ dπα

)
+ dT ∧ dHT , (17)

where qα, πα and T are new canonical variables, and where
HT = HT (qα, πα,T ) to be determined from the Hamiltonian
constraint H = 0.

11E. Czuchry and W.P., arXiv:1202.5448
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Physical Hamiltonian

One gets:
d

dT
qα := {qα,HT}q,π =

∂HT

∂πα
(18)

and
d

dT
πα := {πα,HT}q,π = −∂HT

∂qα
, (19)

where

{·, ·}q,π :=
2∑

α=1

( ∂·
∂qα

∂·
∂πα

− ∂·
∂πα

∂·
∂qα

)
. (20)

Thus, dynamics is generated by the true Hamiltonian HT and is
parametrized by the time variable T .
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Physical Hamiltonian (cont)
Since ṗ3 6= 0, it is locally monotonic and can play the role of relative
time T . Because of the dynamical constraint H = 0, the variable x3 can
be expressed in terms of other variables, so we choose HT := x3.
Making use of the above substitution, we get

Ω = dq1 ∧ dπ1 + dq2 ∧ dπ2 + dT ∧ dHT , (21)

where

q1 := x1, q2 := x2, π1 := p1, π2 := p2, T = −p3, (22)

and where

HT = q2 + ln
(
− e2q1 − e−q1+q2

−1
4

(π2
1 + π2

2 + T 2) +
1
2

(π1π2 + π1T + π2T )
)
. (23)

Physical Hamiltonian is of non-polynomial type in canonical variables
(problem with canonical quantization)!
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Semi-classical Bianchi IX model
In the Misner like variables the dynamics of gravitational field can be
described as motion of a massless particle in 3-dimensional
Minkowskian space in a potential dependent on space and time.
The Hamiltonian (constraint) for the vacuum BIX reads12

H =
9
4

p2 + 36n2q2/3 − Hq ≈ 0 , (24)

where Hq is the q-dependent Hamiltonian for the anisotropic variables,

Hq :=
p2

+ + p2
−

q2 + 36q2/3Vn(β) . (25)

where (q,p;β±,p±) are canonical variables, and where
n = 1 or n3 = 16π2.
The closed FRW model can be obtained by taking
p± = 0 = β±, or simply Hq = 0.

12H. Bergeron, E. Czuchry, J-P. Gazeau, P. Małkiewicz, and W.P.:
arXiv:1501.02174, arXiv:1501.07871
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Figure: The plot of Vn for n = 1 near its minimum.
Boundedness from below, confining aspects, three canyons, and C3v
symmetry are illustrated.
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Classical Hamiltonian

One can rewrite the Hamiltonian in the form:

H =
9
4

p2 −
p2

+ + p2
−

q2 − 36q2/3Wn(β±), (26)

where Wn(β) = −n2 + Vn(β)

It results from Eq. (26) that near the singularity, q = 0, we may treat q
as heavy degree of freedom (as ‘mass’ of q is fixed), and β± as light
degrees of freedom (as ‘mass’ of the β± behaves as q2).
Therefore, we may quantize our system by using an adiabatic
approximation.
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Quantum Hamiltonian

In what follows we apply the modified Dirac quantization method:
quantizing H in kinematical phase space
finding the semi-classical expression Ȟ of the quantum
Hamiltonian Ĥ using the adiabatic approximation
implementing the Hamiltonian constraint on the semi-classical
level Ȟ = 0

Since (q,p) ∈ R∗+ × R and (β±,p±) ∈ R4, we apply:
affine coherent states quantization to (q,p), which gives
p̂ = −i~∂x and the multiplication operator q̂, both acting
in the Hilbert space L2(R∗+,dx)

canonical quantization to (β±,p±), which yields p̂± = −i~∂β± and
the multiplication operator β̂±, both acting in L2(R2,dβ+dβ−)
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ACS quantization: compendium13

Isotropy sector of phase space: Π+ := {(q,p) |p ∈ R , q > 0}
Π+ is an affine group Aff+(R) of the real line with multiplication:

(q,p)(q0,p0) = (qq0,p0/q + p), q ∈ R∗+, p ∈ R . (27)

Aff+(R) has UIR realized in H = L2(R∗+, dx):

U(q,p)φ(x) = (eipx/
√

q)φ(x/q) . (28)

All affine coherent states are defined as: |q,p〉 = U(q,p)|ψ〉, where
|ψ〉 ∈ L2(R∗+, dx) ∩ L2(R∗+, dx/x), called “fiducial vector”
Quantization of classical observable f (q,p) reads:

f 7→ Af =

∫
Π+

f (q,p)|q,p〉〈q,p| dqdp
2πc−1

, c−1 :=

∫ ∞
0
|ψ(x)|2 dx

x
. (29)

13H. Bergeron and J. P. Gazeau, Annals of Physics (NY) 344, 43 (2014).
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Quantum Hamiltonian (cont)

Quantum Hamiltonian Ĥ reads

Ĥ =
9
4

(
p̂2 +

~2K1

q̂2

)
+ 36n2K3q̂2/3 − Ĥq̂ , (30)

Ĥq := K2
p̂2

+ + p̂2
−

q2 + 36K3q2/3Vn(β) . (31)

where the Ki are purely numerical constants dependent on the choice
of the fiducial vector.

We note in (30) the repulsive centrifugal potential term ~2K1q̂−2. It
results from the ACS quantization. As the universe approaches the
singularity, q → 0, this centrifugal term sharply grows in dynamical
significance, and it is responsible for the resolution of the singularity.
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Born-Oppenheimer approximation

In this approximation we assume that the anisotropy degrees of
freedom are frozen in some eigenstate |φn(q(t)) >, evolving
adiabatically, of the q-dependent Hamiltonian Ĥq.
If we denote by EN(q) the eigenenergies of Ĥq, the reduced
Hamiltonian Ĥred

N reads

Ĥred
N =

9
4

(
p̂2 +

~2K1

q̂2

)
+ 36n2K3q̂2/3 − EN(q̂) , (32)

where in the harmonic approximation EN(q) (N = 0,1, . . . ) are

EN(q) ' 24~
q2/3 n

√
2K2K3 (N + 1) . (33)
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Semi-classical approximation

The semi-classical expression Ȟred
N is defined as

Ȟred
N (q,p) = 〈λq,p|Ĥred

N |λq,p〉 , (34)

where λ is chosen to get the correspondence

〈λq,p|q̂|λq,p〉 = q , 〈λq,p|p̂|λq,p〉 = p . (35)

Finally, we obtain

Ȟred
N (q,p) =

9
4

(
p2 +

~2K4

q2

)
+ 36n2K5q2/3 − 24~

q2/3K6n(N + 1) , (36)

where Ki are numerical constants.
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Imposition of Hamiltonian constraint:
Rewritten in terms of the scale factor a6 := q1q2q3 (where qk are
diagonal elements of the metric), the constraint Ȟred

N = 0 reads

ȧ2

a2 + k
c2

a2 + s2
Pc2K4

a6 =
8πG
3c2 ρ(a) , (37)

where

sP := 2πG~ c−3, k :=
K5n2

4
, ρ(a) := ~c(N + 1)

nK6

a4 . (38)

The main features of this quantum model:
anisotropy degrees of freedom produce radiation-like energy
density ρ(a)

repulsive potential term with a−6 generated by the affine CS
quantization, which leads to the resolution of the cosmological
singularity
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Semiclassical trajectories (resolution of singularity)
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Figure: Three periodic semiclassical trajectories in the half-plane (a,H). Blue
dotted curve for N = 0, green dotdashed for N = 1 and red dashed for N = 2.

Each periodic trajectory includes quantum bounce and classical
recollapse. N = 0,1,3, . . . label discrete eigenenergies EN of
anisotropic part of Hamiltonian.
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Summary

Applying
mixed procedure of quantization (ACS and canonical)
adiabatic approximation to the quantum Hamiltonian
imposition of Hamiltonian constraint at the semi-classical level,

it is possible to find a quantum version of the Bianchi IX model.

Origin of repulsive force giving singularity avoidance (FRW case):
LQC: results from approximating the curvature of connection by
holonomies around small loops with non-zero size; keeping this
size to be non-vanishing prevents volume density from collapsing
to zero
ACS: results from centrifugal repulsion term in potential generated
by quantization procedure
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Next steps for the Bianchi IX model:

Quantization of diagonal BIX model by using the vibronic
approximation: sensitivity to crossing of different energy levels
which enables examination of quantum chaos (suppressed in
adiabatic approximation).
Quantization of general BIX model by using hybrid method
within RPS approach

I quantization of physical Hamiltonian to get generator of dynamics
I studies of statistics of energy spectrum to examine quantum

chaos14

14J. Mielczarek and W.P., arXiv:1411.2812
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Next steps (cont)

Quantization of dynamics15 based on classical oscillations of
Kasner’s axes (local spacetime deformations)
. . .→ BI → BII → BI → . . .

determination of spectrum of primordial GW produced during
classical/quantum oscillations of BIX to be compared with
observations

15H. Bergeron, O. Hrycyna, P. Małkiewicz and W.P., arXiv:1405.7887
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