

UNITED KINGDOM · CHINA · MALAYSIA

Hartle-Hawking Wave function in Causal Sets

(Glaser, Surya arXiv:1410.8775)

Lisa Glaser

Nottingham University, Nottingham

May 10, 2015

Outline

The questions I hope to answer in this talk:

What is a causal set?

- Why do we use 2d orders as a model system?
- How do we define the Hartle-Hawking wave function for causal sets?

And how did we implement this definition in our Monte-Carlo code?

Outline

What is a causal set?

The 2-d orders

MC for 2d orders

Number + order = Geometry

Number + order = Geometry

Space-time as a partially ordered set

Number + order = Geometry

Space-time as a partially ordered set

A manifold-like causal set

UNITED KINGDOM · CHINA · MALAYSIA

A manifold-like causal set

- homogeneous point distribution on average
- many diagonal connections

A manifold-like causal set

 pick N points from *M* according to a Poisson distribution

$$P(m, V, \rho) = \frac{(\rho V)^m}{m!} e^{-\rho V}$$

 partial order is induced through the causal structure of the manifold

Alexandrov intervals

UNITED KINGDOM · CHINA · MALAYSIA

Alexandrov intervals

UNITED KINGDOM · CHINA · MALAYSIA

Alexandrov intervals

link 1-interval 2-intervals

The action

Assuming the discreteness is at the Planck scale $l = l_p$

$$\frac{1}{\hbar}S_{2D} = N - 2N_0 + 4N_1 - 2N_2$$

Where

- N = # of elements
- $N_0 = \#$ of relations between elements
- $N_1 = #$ of 1-intervals
- ▶ N₂ = # of 2-intervals

Assuming the discreteness is at the Planck scale $l = l_p$

$$\frac{1}{\hbar}S_{2D} = N - 2N_0 + 4N_1 - 2N_2$$

This expression is motivated by the d'Alembertian operator and can be generalized to any dimension

Assuming the discreteness is at the Planck scale $l = l_p$

$$\frac{1}{\hbar}S_{2D} = N - 2N_0 + 4N_1 - 2N_2$$

This expression is motivated by the d'Alembertian operator and can be generalized to any dimension

In the large density limit this action will fluctuate strongly

Non-locality scale

UNITED KINGDOM · CHINA · MALAYSIA

Sorkins solution

Introduce a smearing function $\epsilon = \left(\frac{l_p}{l}\right)^d$

$$f_2(n,\epsilon) := (1-\epsilon)^n \left(1 - \frac{2\epsilon n}{(1-\epsilon)} + \frac{\epsilon^2 n(n-1)}{2(1-\epsilon)^2} \right)$$

(Sorkin arXiv:gr-qc/0703099)

Non-locality scale

UNITED KINGDOM · CHINA · MALAYSIA

Sorkins solution

Introduce a smearing function $\epsilon = \left(\frac{l_p}{l}\right)^d$

$$f_2(n,\epsilon) := (1-\epsilon)^n \left(1 - \frac{2\epsilon n}{(1-\epsilon)} + \frac{\epsilon^2 n(n-1)}{2(1-\epsilon)^2} \right)$$

Non-locality scale

Sorkins solution

Introduce a smearing function $\epsilon = \left(rac{l_p}{l}
ight)^d$

$$f_2(n,\epsilon) := (1-\epsilon)^n \left(1 - \frac{2\epsilon n}{(1-\epsilon)} + \frac{\epsilon^2 n(n-1)}{2(1-\epsilon)^2} \right)$$

$$\frac{1}{\hbar}S_{2D}(\epsilon) = 4\epsilon \left(N - 2\epsilon \sum_{n=0}^{N-2} N_n f_2(n,\epsilon)\right)$$

 N_n is the number of *n*-intervals

(Sorkin arXiv:gr-qc/0703099)

Outline

COMPANYA, A. 1

What is a causal set?

The 2-d orders

MC for 2d orders

The numbers from 0 to 10 define a total order

0123456789

We can take two such total order to define a coordinate grid

A pair of two numbers defines an element.

Randomly pair the numbers to define a 2d order

Randomly pair the numbers to define a 2d order

(0,1), (1,8), (2,2), (3,4), (4,9), (5,6), (6,3), (7,5), (8,7), (9,0), (10,10)

Total order on numbers defines a partial order on elements

 $(6,3) \prec (8,7)$ because 6 < 8 and 3 < 7

Total order on numbers defines a partial order on elements

(6,3) not related to (5,6) because 6 > 5 and 3 < 6

(Dis)Advantages

In favour of 2d orders

- simple encoding on the computer, with ergodic MC move
- inbuildt embedding makes visualisation easy
- the 'typical' 2d order is a sprinkling into flat space
- in a sense fixed to 2d, makes clear which action

Against 2d orders

- very simple, will only capture part of dynamics
- can not capture entropy effects
- is 2d gravity at best

Outline

What is a causal set?

The 2-d orders

MC for 2d orders

Monte-Carlo Simulations of arbitrary 1 The University of Nottingham 2d orders

The action can be used for Monte Carlo Simulations

$$Z_N = \sum_{C \in \Omega_{2d}} e^{-\frac{\beta}{\hbar} S_{2D}(C,\epsilon)}$$

 β is a Wick rotated inverse temperature and Ω_{2d} is the class of 2d orders

(Surya arXiv:1110.6244)

The MC move on these orders

Pick 2 points. 345678910 1000 8165 832 (6,3) and (5,6)

The MC move on these orders

Randomly decide on one direction 145618910 981 65432

(6,3) and (5,6)

The MC move on these orders

Switch their coordinates in that direction

(5,3) and (6,6)

Phase transition

Phase transition

A sign of manifold-likeness?

Counting the number of sub intervals of a given size

Outline

What is a causal set?

The 2-d orders

MC for 2d orders

Hartle Hawking wave function

Continuum

$$\Psi_0(h_{ab},\Sigma) = A \sum_M \int dg^E e^{-I_E(g)}$$

- Integrate over euclidean geometries
- zero boundary condition to final geometry (h_{ab}, Σ)

Hartle Hawking wave function

Causal Set

$$\Psi_0^{(N)}(\mathcal{N}_f,\beta) \equiv A \sum_{C \in \Omega_N} e^{-rac{1}{\hbar}eta S(C)}$$

- Sum over all Causal Sets
- single initial element to N_f antichain
- in CDT one might call this the loop-loop correlator $G(0, \mathcal{N}_f)$

(Glaser, Surya arXiv:1410.8775)

 $\Psi_0^{(\beta)}(\mathcal{N}_f) = A\mathcal{Z}_\beta(\mathcal{N}_f)$

Using statistical mechanics

$$\langle S_{2d} \rangle(\beta) = \frac{\partial \ln \mathcal{Z}_{\beta}(\mathcal{N}_f)}{\partial \beta}$$

We can then define

$$A\mathcal{Z}_{\beta}(\mathcal{N}_{f}) = A\mathcal{Z}_{0}(\mathcal{N}_{f})e^{-\int_{0}^{\beta}d\beta' \langle \mathcal{S}_{2d} \rangle(\beta')}$$

 $\Psi_0^{(\beta)}(\mathcal{N}_f) = A\mathcal{Z}_\beta(\mathcal{N}_f)$

Using statistical mechanics

$$\langle S_{2d} \rangle (\beta) = \frac{\partial \ln \mathcal{Z}_{\beta}(\mathcal{N}_f)}{\partial \beta}$$

We can then define

$$A\mathcal{Z}_{\beta}(\mathcal{N}_{f}) = A\mathcal{Z}_{0}(\mathcal{N}_{f}) e^{-\int_{0}^{\beta} d\beta' \langle \mathcal{S}_{2d} \rangle(\beta')}$$

Concrete implementation

measure $\langle S_{2d} \rangle (\beta')$ for fixed \mathcal{N}_f using MCMC calculate normalization $\mathcal{Z}_0(\mathcal{N}_f)$

Lisa Glaser

$$\mathcal{Z}_0(\mathsf{free}) = \sum_{\mathcal{N}_f} \mathcal{Z}_0(\mathcal{N}_f)$$

- ► Z₀(free) is the ensemble of all 2d orders
- ► The relative frequency for orders with N_f final elements in Z₀(free) does then give us Z₀(N_f) up to an overall constant

 $\log[Z_0(N_f)]$ 10⁻⁸ 10⁻¹⁹ 10⁻³⁰ 10⁻⁴¹ 10⁻⁵² _IN f 50 30 10 20 40

 $\log[Z_0(N_f)]$ 10⁻⁸ 10⁻¹⁹ 10⁻³⁰ 10⁻⁴¹ 10⁻⁵² Analytic results 10 20 30 40

$\langle S(\beta, \mathcal{N}_f) \rangle$ for all \mathcal{N}_f

How do we integrate $\langle S_{2d} \rangle$?

Measure $\langle S \rangle$ for different β

How do we integrate $\langle S_{2d} \rangle$?

Fit a function to the data

How do we integrate $\langle S_{2d} \rangle$?

Integrate the fit function for an estimate of $-\log Z$

UNITED KINGDOM · CHINA · MALAYSIA

Ψ(ε=0.12, β=8.) $|\Psi|^2$ 0.6 0.5 0.40.3 0.20.1 N_{f} 0.010 30 2050

Ψ(ε=0.12, β=9.) $|\Psi|^2$ 0.6 0.5 0.40.3 0.2 0.1 N_{f} 0.010 30 2050

Geometry in the 1st peak (low β)

UNITED KINGDOM · CHINA · MALAYSIA

Continuum type 2-d order

- Dominated by Z_0
- 'as high as wide'

Geometry in the 1st peak (low β)

- Continuum type 2-d order
- ▶ Dominated by *Z*₀
- 'as high as wide'

Geometry in the 1st peak (low β)

30

Continuum type 2-d order
Dominated by Z_0 'as high as wide'

30

Geometry in the 2nd peak (high β)

UNITED KINGDOM · CHINA · MALAYSIA

- Crystalline structure
- Fast expansion
- Homogeneous pasts

.................

Geometry in the 2nd peak (high β)

UNITED KINGDOM · CHINA · MALAYSIA

- Crystalline structure
- Fast expansion
- Homogeneous pasts

Geometry in the 2nd peak (high β)

UNITED KINGDOM · CHINA · MALAYSIA

Crystalline structure
Fast expansion
Homogeneous pasts

Summary & Conclusion

UNITED KINGDOM · CHINA · MALAYSIA

What did we do?

- 2d orders
- transition from single point to \mathcal{N}_f

What did we find

Two phases

- high temperature (low β): continuum like phase
- low temperature (high β): rapidly expanding, crystalline phase

Thank you for your attention!

UNITED KINGDOM · CHINA · MALAYSIA

What did we do?

2d orders

transition from single point to \mathcal{N}_f

What did we find

Two phases

- high temperature (low β): continuum like phase
- low temperature (high β): rapidly expanding, crystalline phase

What is Ω_{2d} exactly?

Ω_{2d} is the set of N -element "2D orders"

Definition

Let S = (1, ..., N) and $U = (u_1, u_2, ..., u_N)$, $V = (v_1, v_2, ..., v_N)$, with $u_i, v_i \in S$. U and V are then total orders with \prec given by the natural ordering < in S. An N -element 2D order is the intersection $C = U \cap V$ of two total N-element orders U and V, i.e., $e_i \prec e_j$ in C iff $u_i < u_j$ and $v_i < v_j$.

This corresponds to lightcone coordinates.

Back

Open questions on the HH wave function

- recently introduced boundary term
- full simulation without restriction to 2d orders

Open questions in 2d MC

- How does the phase transition behave for other volumes ?
- Does the random phase carry over to negative β^2 , the quantum theory?

(Glaser, Surya, ongoing work)