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“No one knows the reason for all this, but it is probably quantum”

Sir Terry Pratchett, in Pyramids

Hořava-Lifshitz gravity (HLG)
An attempt to build a perturbatively renormalizable theory of gravity
valid at all scales. Amongst its properties:

built in unitarity
no extra fields when compared with GR,
no extra dimensions.

Due to the lack of free lunches which characterizes life, the universe and
everything, all these nice properties come at a price:

Lorentz invariance is broken,
It is far from clear if GR can be recovered in the IR.
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HLG I

Let us define the theory in the following three steps:
Propose a non Gaussian UV fixed point (UV FP),
Choose symmetry group which respects the properties of the UV FP,
Construct the most general action respecting the symmetries and
being such that:

there are no more than two time derivatives so as to get unitarity,
in terms of power counting, it is perturbatively renormalizable.

Step 0: field content
There are two options regarding the field content:

Insist in matching that of GR → N(x , t), N i (x , t), gij(x , t).
This is the so-called non-projectable HLG.

Consider only gij(x , t) as fundamental and add only what is strictly
necessary to build invariants.

This leads to projectable HLG: same as before but with N ≡ N(t).
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HLG II - The UV fixed point
The UV FP is such that solutions of the theory at that scale should
satisfy the anisotropic scaling

t → bz t, x i → bx i .

z - critical exponent characterizing the theory,
z 6= 1 ⇒ preferred notion of time.

Due to the preffered notion of time, 4-dimensional Diffeomorphisms are
not an appropriate symmetry for these theories!

Manifold restrictions
To have a preferred notion of time, consider only manifolds admitting a
global time foliation,

M = R× Σ

Here Σ will be closed and compact unless otherwise specified.

Luís Pires On the role of the extra kinetic term coupling in Hořava-Lifshitz gravity



Introduction to Hořava-Lifshitz gravity
Constraint analysis of non-projectable λ-R model

Conclusion

HLG II - The UV fixed point
The UV FP is such that solutions of the theory at that scale should
satisfy the anisotropic scaling

t → bz t, x i → bx i .

z - critical exponent characterizing the theory,
z 6= 1 ⇒ preferred notion of time.

Due to the preffered notion of time, 4-dimensional Diffeomorphisms are
not an appropriate symmetry for these theories!

Manifold restrictions
To have a preferred notion of time, consider only manifolds admitting a
global time foliation,

M = R× Σ

Here Σ will be closed and compact unless otherwise specified.

Luís Pires On the role of the extra kinetic term coupling in Hořava-Lifshitz gravity



Introduction to Hořava-Lifshitz gravity
Constraint analysis of non-projectable λ-R model

Conclusion

HLG III - Replacing diffeomorphism invariance
Accepting we cannot have invariance under 4-dimensional
diffeomorphisms, what we want is:

a symmetry group which preserves the foliation structure,
a symmetry group as close to diffeomorphisms as possible.

Choice: impose invariance under foliation-preserving Diffeomorphisms.
Infinitesimal generators of DiffF (M)

δt = f (t), δx i = ζ i (x , t)

Extrinsic curvature
Like in GR, one needs Kij to build invariants with time derivatives of the
metric,

Kij = 1
2N (ġij −∇iNj −∇jNi ),

Unlike in GR, this can just as well be done with N ≡ N(t), hence
the existence of the projectable version.
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HLG IV - Kinetic term of the action
Because of the reduced symmetry group, both KijK ij and K 2 are
independently invariant,

SK = 1
gκ

∫
dt
∫

d3x√g N
(
KijK ij − λK 2) =

1
gκ

∫
dt
∫

d3x√g NKijG ijkl
λ Kkl ,

with “little lambda” λ a new dimensionless coupling.
λ = 1 restores the Kinetic term of GR,
G ijkl

λ is a generalized Wheeler-DeWitt metric,
G ijkl

λ = 1
2
(
g ikg jl + g ilg jk)− λg ijgkl ,

which is invertible only for λ 6= 1
3 ,

Gλ
ijkl = 1

2 (gikgjl + gilgjk)− λ
3λ−1 gijgkl .

Picking a z
As it turns out, in d + 1 dimensions, demanding [gκ] = 0 determines z to
be z = d .
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HLG V - Potential term
The potential term of the action then contains all invariants containing
only spatial derivatives,

SV =
∫

dt
∫

d3x√g NV(gij ,N)

Since
[
K 2] = 2d , for 3 spatial dimensions, terms with up to 6

spatial derivatives are allowed
Examples of terms that should appear include R2, RRijR ij ,
gkl∇kRij∇lR ij , among many others.

An extra invariant
For the non-projectable version of the theory, an extra class of invariants
should be included:

As it turns out, ai ≡ ∇i logN transforms as a vector under
DiffF (M),
They imply a proliferation of invariants on the potential term of the
action

because it was not messy enough as it was.
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Classical limit and the λ-R model

The action describing the low energy limit of the theory is then

S =
∫

dt
∫

d3x√g N
(

KijG ijkl
λ Kkl + R − 2Λ + βaiai

)
.

Because our goal is to understand the role of λ, we will set β = 0.
The system thus described will be referred to as a λ-R model.
In this case, both versions of the theory are described by the same
action,
The different results for both of them illustrate the role of the
projectability condition.

Goal
To give an answer to the question:

is it really necessary for λ→ 1 for a λ-R model to reproduce GR?
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Non-projectable HLG I - Legendre transformation

Conjugate momenta
We start by defining generalized momenta in the usual way,

πij ≡ δS
δġ ij =

√gG ijkl
λ Kkl

φ ≡ δS
δṄ = 0, φi ≡ δS

δṄ i = 0

One can then perform the Legendre transformation to obtain the total
Hamiltonian,

Ht =
∫

d3x
{

NH+ N iHi + αφ+ αiφi
}
,

with α and αi being Lagrange multipliers and H and Hi given by

H ≡
Gλ

ijkl√g π
ijπkl −√g (R − 2Λ) ,

Hi ≡ −2gij∇kπ
jk .

Luís Pires On the role of the extra kinetic term coupling in Hořava-Lifshitz gravity



Introduction to Hořava-Lifshitz gravity
Constraint analysis of non-projectable λ-R model

Conclusion

Non-projectable HLG I - Legendre transformation

Conjugate momenta
We start by defining generalized momenta in the usual way,

πij ≡ δS
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Non-projectable HLG II - Constraints

Since there are no time derivatives of N and N i on the action, their
momenta define the four primary constraints of the theory

φ = 0, φi = 0,
Their time preservation yield the familiar looking (modified)
Hamiltonian and momentum constraints,

φ̇ = H ≈ 0, φ̇i = Hi ≈ 0.

Some things change, some stay the same

We now need to impose Ḣ ≈ 0 and Ḣi ≈ 0.
Since neither Hi nor spatial diffeomorphisms changed, all PBs
involving Hi still vanish on the constraint surface.
Due to λ, the PB between H and itself contains an extra term,

this extra term is exclusively present on the non-projectable theory,
because of its presence, Ḣ ≈ 0 implies a tertiary constraint.
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Non-projectable HLG III - The tertiary constraint

Tertiary constraint

From imposing Ḣ ≈ 0 we obtain
Ḣ = −2 1−λ

3λ−1
(
N∇2π + 2g ij∇iπ∇jN

)
≈ 0

Remark: the non-trivial term comes from the {H,H} part of Ḣ,
more precisely, from the last term in the variation of R:

δgij

∫
d3xN√gR =

√gN
( 1

2 g ijR − R ij)+
√gG ijkl

1 ∇k∇lN
hence its absence from the projectable theory.

It turns out Ḣ ≈ 0 it actually has a very simple solution:

∇iπ ≈ 0 (1)

Asymptotically flat spacetime
Note that the only solution of (1) for asymptotically flat spacetimes is
π = 0. In this case all the λ-dependence drops out and GR is recovered.
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NP HLG IV - Tertiary and quaternary constraints
For compact hypersurfaces, solutions to (1) are given by the constant
mean curvature (CMC) gauge condition

Ḣ ≈ 0⇒ ω ≡ π − a(t)
√g ≈ 0, (2)

a(t) can be any spatial constant,
In our original papper, we considered a(t) = 0,
Here, we use a more general solution obtained by integrating (2)
over Σ,

a(t) = 1
V

∫
d3xπ.

since π does not vanish, a non-trivial quaternary constraint emerges.

Quaternary constraint (I promise it’s the last one)
The quaternary constraint is a λ-dependent Lapse fixing equation

M≡ DλN −
√g
V
∫

d3xDλN ≈ 0,

Dλ ≡
√g

(
R − 3Λ + a2

2(3λ−1) −∇
2
)
.
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NP HLG V - Closing the algebra and counting d.o.f.

To wrap up the constraint algebra, one must check the time preservation
ofM≈ 0.
Thankfully, that determines the Lagrange multiplier α associated with
φ ≈ 0,

F + Dλα−
√g
V

∫
d3x (F + Dλα) ≈ 0,

F =
(

2πkl − πgkl 2λ−1
3λ−1

) (
N∇k∇kN +∇k (N∇l N)− N2Rkl

)
+ N2πR

3λ−1 −
αNDλN

3λ−1

Degree of freedom counting
Upon redefining Hi to include the action of spatial diffeomorphisms
on N and φ, we are left with:

6 first class constraints, Hi ≈ 0 and φi ≈ 0
4 second class constraints, H ≈ 0, ω ≈ 0,M≈ 0, and φ ≈ 0.

Despite the presence of λ on the e.o.m., H ≈ 0, andM≈ 0, the #
of local physical d.o.f. is the same as in GR - two.
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NP HLG VI - momentum decomposition
Whatever we have, we know that:

We have a one-to-one correspondence between our constraints and
all consistency conditions present in GR with the CMC gauge,
We have exactly the same number of physical degrees of freedom,

So, is this GR or not?
One unpleasant feature is that λ appears in different ways inM≈ 0 and
Ṁ ≈ 0. Here’s a way to fix that:

Momentum decomposition
Without loss of generality, decompose the momentum tensor density as

πij = πij
TT +∇iuj +∇jui + 1

3 g ijπ. (3)

Plug (3) in Hi ≈ 0 and notice the follow solves the constraint

πij = πij
TT + 1

3 g ijπ. (4)

(4) not only solves Hi ≈ 0 but turns all λ-dependence into 1
3λ−1 .
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NP HLG VII - modified Lichnerowicz-York equation

Another advantage of the TT decomposition, is that it is the first
step towards the Lichnerwoicz-York equation in GR,
The second step would be assuming ∇iπ = 0, which we have for
free!
Consider the following conformal transformation,

ḡij = φ4gij , π̄ij
TT = φ−4φij

TT , π̄ = φ6π. (5)

Write down H ≈ 0 for the barred variables. Plug (5) and obtain an
equation for φ, a modified Lichnerowicz-York equation,

8∇2φ− Rφ+ φ−7 πij
TT πTT

ij
g − φ5

3(3λ−1)
π2

g ≈ 0. (6)

If λ > 1/3, we are guaranteed that there is a φ > 0 solving (6) and
it is unique.

So, is this GR or not? The usual initial value techniques for GR don’t
seem to generalize for λ < 1/3. For λ > 1/3 things work but we clearly
get a different φ.
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Another advantage of the TT decomposition, is that it is the first
step towards the Lichnerwoicz-York equation in GR,
The second step would be assuming ∇iπ = 0, which we have for
free!
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Conclusion
Upon a careful examination of the constraint algebra we have:

The same number of local d.o.f. found in GR,
The CMC gauge condition is naturally imposed on the theory,

After a TT decomposition, we obtained a modified LY equation,
The λ-dependence becomes the same everywhere and Hi ≈ 0 is
solved,
The modified LY equation has unique solutions for λ > 1/3,
For an arbitrary base metric, the conformal factor solving H ≈ 0 is
not the same as in GR.
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Thank you!
Don’t make a sound: they’re not dead, just sleeping.
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