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Shape Dynamics

Claim

3 foliation where gauge-invariant observables of GR are 3d conformally (Weyl)
invariant.

g9 e#gl

Caveat: IR is (nearly) CONFORMAL. (But non-locall)

= Ontological Shift: Only conformal degrees of freedom are fundamentall!

‘ Ignoring scale can lead to important global differences.




SHAPE DYNAMICS BASICS



Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)

11/78



Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)

@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T —> T — 4gab7l'ab




Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)
@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T —> T — 4gab7l'ab

o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.

13/78



Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)

@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T —> T — 4gab7l'ab

o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.
o Interpretation: Conformally compensated ADM.

14 /78



Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)

@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T —> T — 4gab7l'ab

o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.
o Interpretation: Conformally compensated ADM.
o C generates canonical transformation.

15/78



Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)

@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T —> T — 4gab7l'ab

o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.
o Interpretation: Conformally compensated ADM.
o C generates canonical transformation.
@ Linking Theory — ADM
= Gauge fixing ¢ =0 of C = 0.

16/78



Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)
@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T —> T — 4gab7l'ab

o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.
o Interpretation: Conformally compensated ADM.
o C generates canonical transformation.
@ Linking Theory — ADM
= Gauge fixing ¢ =0 of C = 0.
@ Linking Theory — Shape Dynamics
o Gauge fixing 7y = 0 of H(e*®gp, e *¥7?%) =0




Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)

@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T —> T — 4gab7l'ab

o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.
o Interpretation: Conformally compensated ADM.
o C generates canonical transformation.

@ Linking Theory — ADM

= Gauge fixing ¢ =0 of C = 0.

@ Linking Theory — Shape Dynamics
o Gauge fixing Ty = 0 of H(e*®gap, e *7?P) =0
e Solve Hamiltonian constraint for conformal factor (elliptic equation).

18/78



Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)

@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T —> T — 4gab7l'ab

o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.
o Interpretation: Conformally compensated ADM.
o C generates canonical transformation.

@ Linking Theory — ADM
= Gauge fixing ¢ =0 of C = 0.
@ Linking Theory — Shape Dynamics
o Gauge fixing Ty = 0 of H(e*®gap, e *7?P) =0
e Solve Hamiltonian constraint for conformal factor (elliptic equation).
e . fixes foliation in Linking Theory.

19/78



Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)
@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T — T — 4gab7l'ab
o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.
o Interpretation: Conformally compensated ADM.
o C generates canonical transformation.
@ Linking Theory — ADM
= Gauge fixing ¢ =0 of C = 0.
@ Linking Theory — Shape Dynamics
o Gauge fixing Ty = 0 of H(e*®gap, e *7?P) =0
e Solve Hamiltonian constraint for conformal factor (elliptic equation).
e . fixes foliation in Linking Theory.

= C = 0 becomes g,»m?* = 0 (generator of conformal transformations)!




Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)
@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T — T — 4gab7l'ab
o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.
o Interpretation: Conformally compensated ADM.
o C generates canonical transformation.

@ Linking Theory — ADM
= Gauge fixing ¢ =0 of C = 0.
@ Linking Theory — Shape Dynamics
o Gauge fixing Ty = 0 of H(e*®gap, e *7?P) =0
e Solve Hamiltonian constraint for conformal factor (elliptic equation).
e . fixes foliation in Linking Theory.

= C = 0 becomes g,»m?* = 0 (generator of conformal transformations)!

@ Shape Dynamics — Dictionary (ADM in CMC)
= H(gap, 7°) = 0 gauge fixes 7 = 0 (elliptic equation).




Shape Dynamics Basics
oeo

The Road to Shape Dynamics

e ADM — Linking Theory
@ Phase space extension: ['(g,p; 70) = Te(gab, b; 7rab,7r¢)

@ Canonical transformation: g,, — e*?g,,, w1 — e~ %720 ¢ — ¢,
T —> T — 4gab7l'ab

o Constraints: H(e*®g,p, e~ *710), Ha(e*®g,p, e *¢7?b), C = Ty — 4g,,mP.

o Interpretation: Conformally compensated ADM.
o C generates canonical transformation.

Linking Theory — ADM

= Gauge fixing ¢ =0 of C = 0.

Linking Theory — Shape Dynamics
o Gauge fixing Ty = 0 of H(e*®gap, e *7?P) =0
e Solve Hamiltonian constraint for conformal factor (elliptic equation).
e . fixes foliation in Linking Theory.

= C = 0 becomes g,»m?* = 0 (generator of conformal transformations)!

Shape Dynamics — Dictionary (ADM in CMC)
= H(gap, 7°) = 0 gauge fixes 7 = 0 (elliptic equation).

5]

conformal gauge of Shape Dynamics is equivalent to a foliation of ADM!
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Overall Picture

Shape Dynamics and ADM share a common gauge

s He(g, )

S(Tyg, Tym)

Take home messages:
@ Shape Dynamics is constructed by solving two elliptic differential
equations for ¢ (H gauge fixing) and N (propagation of g.,m®® = 0).
@ A non-trivial SD Hamiltonian is only obtained by putting a global
restriction on ¢:
o For Y = 0 topology: vol(gap) = vol(e ™ *®g.p).
e For open X: fall-off conditions on ¢ (e.g., asymptotically flat)
= dimensional constants are smuggled in!
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Consequences: Classical

Locally Shape Dynamics is equivalent to GR.
but

Globally solutions of both theories can differ!

o Kruskal = (Traversable) Einstein—Rosen bridge.
= singularity containing region is excluded!

@ N-body dynamics projected on shape space is dissipative.
= Arrow of Time.

@ Others??
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Spherically Symmetric Shape Dynamics

Spherically Symmetric Ansatz

General spacetime Ansatz:
ds® = —N?dt? + A%dr® + B*dQ* .
If we choose (coordinate transformation)
A=e* B = re*® (1)

Then
gsz) = e**™Diag(1, r*, rsin? 0).

= general spherically symmetric spatial metric is conformally flat!

But: ¢ is gauge in Shape Dynamics!

= Spherically Symmetric SD is static conformal geometry!
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Global Parameters

Integration constants for (N, ¢) in SD Hamiltonian?

Interpretation

@ Integration constants = affect Hamiltonian.

@ Test matter fields ‘feel’ integration constants through minimal coupling to
SD Hamiltonian.

-, integration constants parametrize propagation of test fields in SD.

Methodology

(At least) 2 perspectives:

@ (Rigorous) Minimally couple matter to SD, take zero back-reaction limit,
analyse propagation of fields.

@ (Trick) Construct dual spacetime metric and use geodesic principle.

= pick option 2!
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A Shape Dynamics Solution

Assume static (N, N?, ¢) (NOT most general sol'n) *

Dual Spacetime Metric
PDE's for (¢, N):

vVQ=0 V(QN) =0, (2)
where Q = log ¢.
General Solution:
Q=a(l+b/r) NQ=c(1+d/r). (3)

Time units = a = 1, Spatial units = ¢ = 1, Consistency = d = —r

=>H5D:2b—¥

Compare to ADM energy = b = m/2, where m = ADM energy.

! Gomes 2014 and sg-Forbes (in preparation)
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Traversable Warmhole in S

A dual spacetime metric to the SD solution:

2
ds® = — (%) dt® + (1 + m/2r)* (dr2 + r2dQ2) (4)

This is metric for an Einstein—Rosen bridge.

Traversable Warmhole?

In spacetime picture:
e /—g =0 when r = m/2 (horizon).
e Guo(r =m/2) x 6(r — m/2).
@ Sourced by “exotic” matter in spacetime picture.

But, shape dynamics solution and parameters are all finite!

= ‘exotic’ nature of matter is conformal.

.. SD ontology suggests that the Einstein—Rosen bridge is physical!
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2 Scenarios: (Standard QFT)

1. Standard
Non-Gaussian (and highly non-local) UV-Fixed Point:

Conf(3,1) ~ SO(4, 2) *M2H"8 1503, 1)

Shape Dynamics: Conf(3) ~ SO(4,1) € SO(4,2) is a residual “finger print”" of
Uv.

= non-local Conf(3) could help to characterise non-local Conf(3,1)?!
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Possible Quantum Consequences ||

2. Non-Standard (‘Hofava—Lifshitz-like")

Symmetry: Foliation-preserving conformal diffeomorphisms.

UV-Fixed Point is local Conf(3)

Relevant deformation (UV): (Cotton)?

= anisotropic scaling (+ detailed balance)

.". Power Counting Renormalizable!

New Aspirations:
@ New theory space and field content.
@ RG-Flow between local UV and non-local IR fixed points.
e Conformal invariance is maintained throughout RG-flow.

@ No conformal anomaly in 3d.
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There is a foliation of ADM where the gauge-invariant degrees of freedom
are conformally invariant.

This suggests an ontological shift to Shape Dynamics motivated by:

e The fact that only ratios of lengths are observable.
o Fixed points are conformal.

Classical: global differences suggest new physics = traversable warmhole.

Semi-Classical: Information loss in SD black holes?

@ Quantum: new proposal for UV fixed point.




THANK YOU!
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