An Introduction to Shape Dynamics

Sean Gryb

Radboud Universiteit Nijmegen Institute for Mathematics, Astrophysics and Particle Physics

Quantum Gravity in Cracow⁴ 10 May 2015

INTRODUCTION

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000		000000		

Conformal Symmetry in Gravity?

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000		000000		

Conformal Symmetry in Gravity?

Why?

• No dimensionful quantities.

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000		000000		

Conformal Symmetry in Gravity?

Why?

- No dimensionful quantities.
- $\textbf{O} \quad \mathsf{UV} \text{ fixed point} \Rightarrow \mathsf{conformal}.$

000	000	000000	Quantum Consequences	00
Shape D	ynamics			

 \exists foliation where gauge-invariant observables of GR are 3d conformally (Weyl) invariant.

$$g^{(3)}_{ab}
ightarrow e^{\phi(x)}g^{(3)}_{ab}$$

Shape E	Ovnamics			
000	000	000000	000	00
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

 \exists foliation where gauge-invariant observables of GR are 3d conformally (Weyl) invariant.

$$g^{(3)}_{\scriptscriptstyle ab}
ightarrow e^{\phi(x)} g^{(3)}_{\scriptscriptstyle ab}$$

Caveat: IR is (nearly) CONFORMAL. (But non-local!)

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00
Shape I	Dynamics			

 \exists foliation where gauge-invariant observables of GR are 3d conformally (Weyl) invariant.

$$g^{(3)}_{ab}
ightarrow e^{\phi(x)}g^{(3)}_{ab}$$

Caveat: IR is (nearly) CONFORMAL. (But non-local!)

 \Rightarrow Ontological Shift: Only conformal degrees of freedom are fundamental!

Shane D	vnamics			
000	000	000000	000	00
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

 \exists foliation where gauge-invariant observables of GR are 3d conformally (Weyl) invariant.

$$g^{(3)}_{ab}
ightarrow e^{\phi(x)}g^{(3)}_{ab}$$

Caveat: IR is (nearly) CONFORMAL. (But non-local!)

 \Rightarrow Ontological Shift: Only conformal degrees of freedom are fundamental!

Ignoring scale can lead to important global differences.

Shape Dynamics Basics

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00
The F	Road to Shape Dyn	amics		

• ADM \rightarrow Linking Theory

4 Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **1** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **@** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}, \pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}, \phi \rightarrow \phi, \pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - $\begin{array}{l} \textcircled{\textbf{O}} \quad \text{Canonical transformation: } g_{ab} \rightarrow e^{4\phi}g_{ab}, \ \pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}, \ \phi \rightarrow \phi, \\ \pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab} \end{array}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_a(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **2** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}$, $\pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}$, $\phi \rightarrow \phi$, $\pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_{a}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.
 - Interpretation: Conformally compensated ADM.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **2** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}$, $\pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}$, $\phi \rightarrow \phi$, $\pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_{a}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.
 - Interpretation: Conformally compensated ADM.
 - C generates canonical transformation.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **2** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}$, $\pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}$, $\phi \rightarrow \phi$, $\pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_a(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.
 - Interpretation: Conformally compensated ADM.
 - C generates canonical transformation.
- Linking Theory \rightarrow ADM
 - \Rightarrow Gauge fixing $\phi = 0$ of C = 0.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- $\bullet \ \mathsf{ADM} \to \mathsf{Linking} \ \mathsf{Theory}$
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **2** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}, \pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}, \phi \rightarrow \phi, \pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_{a}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.
 - Interpretation: Conformally compensated ADM.
 - C generates canonical transformation.
- Linking Theory \rightarrow ADM
 - \Rightarrow Gauge fixing $\phi = 0$ of C = 0.
- $\bullet~\mbox{Linking Theory} \to \mbox{Shape Dynamics}$
 - Gauge fixing $\pi_{\phi}=0$ of $\mathcal{H}(e^{4\phi}g_{ab},e^{-4\phi}\pi^{ab})=0$

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **2** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}, \pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}, \phi \rightarrow \phi, \pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_a(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.
 - Interpretation: Conformally compensated ADM.
 - C generates canonical transformation.
- Linking Theory \rightarrow ADM
 - \Rightarrow Gauge fixing $\phi = 0$ of C = 0.
- Linking Theory \rightarrow Shape Dynamics
 - Gauge fixing $\pi_{\phi}=0$ of $\mathcal{H}(e^{4\phi}g_{ab},e^{-4\phi}\pi^{ab})=0$
 - Solve Hamiltonian constraint for conformal factor (elliptic equation).

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **2** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}, \pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}, \phi \rightarrow \phi, \pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_a(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.
 - Interpretation: Conformally compensated ADM.
 - C generates canonical transformation.
- Linking Theory \rightarrow ADM
 - \Rightarrow Gauge fixing $\phi = 0$ of C = 0.
- Linking Theory \rightarrow Shape Dynamics
 - Gauge fixing $\pi_{\phi}=0$ of $\mathcal{H}(e^{4\phi}g_{ab},e^{-4\phi}\pi^{ab})=0$
 - Solve Hamiltonian constraint for conformal factor (elliptic equation).
 - ∴ fixes foliation in Linking Theory.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **2** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}, \pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}, \phi \rightarrow \phi, \pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_a(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.
 - Interpretation: Conformally compensated ADM.
 - C generates canonical transformation.
- Linking Theory \rightarrow ADM
 - \Rightarrow Gauge fixing $\phi = 0$ of C = 0.
- Linking Theory \rightarrow Shape Dynamics
 - Gauge fixing $\pi_{\phi}=0$ of $\mathcal{H}(e^{4\phi}g_{ab},e^{-4\phi}\pi^{ab})=0$
 - Solve Hamiltonian constraint for conformal factor (elliptic equation).
 - ∴ fixes foliation in Linking Theory.
 - $\Rightarrow C = 0$ becomes $g_{ab}\pi^{ab} = 0$ (generator of conformal transformations)!

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **2** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}, \pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}, \phi \rightarrow \phi, \pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_a(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.
 - Interpretation: Conformally compensated ADM.
 - C generates canonical transformation.
- Linking Theory \rightarrow ADM
 - \Rightarrow Gauge fixing $\phi = 0$ of C = 0.
- Linking Theory \rightarrow Shape Dynamics
 - Gauge fixing $\pi_{\phi}=0$ of $\mathcal{H}(e^{4\phi}g_{ab},e^{-4\phi}\pi^{ab})=0$
 - Solve Hamiltonian constraint for conformal factor (elliptic equation).
 - \therefore fixes foliation in Linking Theory.
 - $\Rightarrow C = 0$ becomes $g_{ab}\pi^{ab} = 0$ (generator of conformal transformations)!
- Shape Dynamics \rightarrow Dictionary (ADM in CMC) $\Rightarrow \mathcal{H}(g_{ab}, \pi^{ab}) = 0$ gauge fixes $\pi = 0$ (elliptic equation).

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00

- ADM \rightarrow Linking Theory
 - **9** Phase space extension: $\Gamma(g_{ab}; \pi^{ab}) \rightarrow \Gamma_{e}(g_{ab}, \phi; \pi^{ab}, \pi_{\phi})$
 - **2** Canonical transformation: $g_{ab} \rightarrow e^{4\phi}g_{ab}$, $\pi^{ab} \rightarrow e^{-4\phi}\pi^{ab}$, $\phi \rightarrow \phi$, $\pi_{\phi} \rightarrow \pi_{\phi} 4g_{ab}\pi^{ab}$
 - Constraints: $\mathcal{H}(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $\mathcal{H}_a(e^{4\phi}g_{ab}, e^{-4\phi}\pi^{ab})$, $C \equiv \pi_{\phi} 4g_{ab}\pi^{ab}$.
 - Interpretation: Conformally compensated ADM.
 - C generates canonical transformation.
- Linking Theory \rightarrow ADM
 - \Rightarrow Gauge fixing $\phi = 0$ of C = 0.
- Linking Theory \rightarrow Shape Dynamics
 - Gauge fixing $\pi_{\phi}=0$ of $\mathcal{H}(e^{4\phi}g_{ab},e^{-4\phi}\pi^{ab})=0$
 - Solve Hamiltonian constraint for conformal factor (elliptic equation).
 - \therefore fixes foliation in Linking Theory.
 - $\Rightarrow C = 0$ becomes $g_{ab}\pi^{ab} = 0$ (generator of conformal transformations)!
- Shape Dynamics \rightarrow Dictionary (ADM in CMC) $\Rightarrow \mathcal{H}(g_{ab}, \pi^{ab}) = 0$ gauge fixes $\pi = 0$ (elliptic equation).
- \therefore a conformal gauge of Shape Dynamics is equivalent to a foliation of ADM!

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	
000	000	000000	000	00	
Overall Picture					

Take home messages:

• Shape Dynamics is constructed by solving two elliptic differential equations for ϕ (\mathcal{H} gauge fixing) and N (propagation of $g_{ab}\pi^{ab} = 0$).

Take home messages:

- Shape Dynamics is constructed by solving two elliptic differential equations for ϕ (\mathcal{H} gauge fixing) and N (propagation of $g_{ab}\pi^{ab} = 0$).
- A non-trivial SD Hamiltonian is only obtained by putting a global restriction on ϕ :
 - For $\partial \Sigma = 0$ topology: $vol(g_{ab}) = vol(e^{-4\phi}g_{ab})$.

Take home messages:

- Shape Dynamics is constructed by solving two elliptic differential equations for ϕ (\mathcal{H} gauge fixing) and N (propagation of $g_{ab}\pi^{ab} = 0$).
- A non-trivial SD Hamiltonian is only obtained by putting a global restriction on ϕ :
 - For $\partial \Sigma = 0$ topology: $vol(g_{ab}) = vol(e^{-4\phi}g_{ab})$.
 - For open Σ : fall-off conditions on ϕ (e.g., asymptotically flat)

Take home messages:

- Shape Dynamics is constructed by solving two elliptic differential equations for ϕ (\mathcal{H} gauge fixing) and N (propagation of $g_{ab}\pi^{ab} = 0$).
- A non-trivial SD Hamiltonian is only obtained by putting a global restriction on ϕ :
 - For $\partial \Sigma = 0$ topology: $vol(g_{ab}) = vol(e^{-4\phi}g_{ab})$.
 - For open Σ : fall-off conditions on ϕ (e.g., asymptotically flat)
 - \Rightarrow dimensional constants are smuggled in!

CLASSICAL CONSEQUENCES

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	00000	000	00
Consequ	ences: Classical			

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	00000	000	00
Consequ	ences: Classical			

but

Globally solutions of both theories can differ!

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	00000	000	00
Conseq	uences: Classical			

but

Globally solutions of both theories can differ!

Examples

Kruskal ⇒ (Traversable) Einstein–Rosen bridge.
 ⇒ singularity containing region is excluded!

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	00000	000	00
Consec	quences: Classical			

but

Globally solutions of both theories can differ!

Examples

- Kruskal ⇒ (Traversable) Einstein–Rosen bridge.
 ⇒ singularity containing region is excluded!
- *N*-body dynamics projected on shape space is dissipative.
 ⇒ Arrow of Time.

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	00000	000	00
Consec	quences: Classical			

but

Globally solutions of both theories can differ!

Examples

- Kruskal ⇒ (Traversable) Einstein–Rosen bridge.
 ⇒ singularity containing region is excluded!
- N-body dynamics projected on shape space is dissipative.
 ⇒ Arrow of Time.
- Others??

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	00000	000	00
C 1 1				

Spherically Symmetric Shape Dynamics

Spherically Symmetric Ansatz

General *spacetime* Ansatz:

$$\mathrm{d}s^2 = -N^2 \mathrm{d}t^2 + A^2 \mathrm{d}r^2 + B^2 \mathrm{d}\Omega^2 \,.$$

If we choose (coordinate transformation)

$$A = e^{2\phi} \qquad \qquad B = re^{2\phi} \qquad (1)$$

Then

$$g^{(3)}_{ab} = e^{4\phi(x)}\mathsf{Diag}(1, r^2, r^2\sin^2\theta)_{ab}$$

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	00000	000	00
C 1 1				

Spherically Symmetric Shape Dynamics

Spherically Symmetric Ansatz

General *spacetime* Ansatz:

$$\mathrm{d}s^2 = -N^2 \mathrm{d}t^2 + A^2 \mathrm{d}r^2 + B^2 \mathrm{d}\Omega^2 \,.$$

If we choose (coordinate transformation)

$$A = e^{2\phi} \qquad \qquad B = re^{2\phi} \qquad (1)$$

Then

$$g^{(3)}_{ab} = e^{4\phi(x)}\mathsf{Diag}(1, r^2, r^2\sin^2\theta)_{ab}$$

 \Rightarrow general spherically symmetric spatial metric is conformally flat!

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	00000	000	00
C 1 1		D ·		

Spherically Symmetric Shape Dynamics

Spherically Symmetric Ansatz

General *spacetime* Ansatz:

$$\mathrm{d}s^2 = -N^2 \mathrm{d}t^2 + A^2 \mathrm{d}r^2 + B^2 \mathrm{d}\Omega^2 \,.$$

If we choose (coordinate transformation)

$$A = e^{2\phi} \qquad \qquad B = r e^{2\phi} \qquad (1)$$

Then

$$g^{(3)}_{ab} = e^{4\phi(x)}\mathsf{Diag}(1, r^2, r^2\sin^2\theta)_{ab}$$

 \Rightarrow general spherically symmetric spatial metric is conformally flat!

But: ϕ is gauge in Shape Dynamics!

C I .		D .		
000	000	00000	000	00
	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

Spherically Symmetric Shape Dynamics

Spherically Symmetric Ansatz

General spacetime Ansatz:

$$\mathrm{d}s^2 = -N^2\mathrm{d}t^2 + A^2\mathrm{d}r^2 + B^2\mathrm{d}\Omega^2\,.$$

If we choose (coordinate transformation)

$$A = e^{2\phi} \qquad \qquad B = re^{2\phi} \qquad (1)$$

Then

$$g_{ab}^{(3)} = e^{4\phi(x)}\mathsf{Diag}(1, r^2, r^2\sin^2\theta)_{ab}$$

 \Rightarrow general spherically symmetric spatial metric is conformally flat!

But: ϕ is gauge in Shape Dynamics!

 \Rightarrow Spherically Symmetric SD is *static* conformal geometry!

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions		
000	000	000000	000	00		
Global	Global Parameters					

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	
000	000	000000	000	00	
Global Parameters					

Interpretation

• Integration constants \Rightarrow affect Hamiltonian.

Clabel Devementary					
		000000			
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	

Interpretation

- Integration constants \Rightarrow affect Hamiltonian.
- Test matter fields 'feel' integration constants through minimal coupling to SD Hamiltonian.

Clobal Parameters					
000	000	000000	000	00	
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	

Interpretation

- Integration constants \Rightarrow affect Hamiltonian.
- Test matter fields 'feel' integration constants through minimal coupling to SD Hamiltonian.
- : integration constants parametrize propagation of test fields in SD.

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	
000	000	000000	000	00	
Clobal Parameters					

Interpretation

- Integration constants \Rightarrow affect Hamiltonian.
- Test matter fields 'feel' integration constants through minimal coupling to SD Hamiltonian.
- \therefore integration constants parametrize propagation of test fields in SD.

Methodology

(At least) 2 perspectives:

 (Rigorous) Minimally couple matter to SD, take zero back-reaction limit, analyse propagation of fields.

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	
000	000	000000	000	00	
Clobal Parameters					

Interpretation

- Integration constants \Rightarrow affect Hamiltonian.
- Test matter fields 'feel' integration constants through minimal coupling to SD Hamiltonian.
- : integration constants parametrize propagation of test fields in SD.

Methodology

(At least) 2 perspectives:

- (Rigorous) Minimally couple matter to SD, take zero back-reaction limit, analyse propagation of fields.
- (Trick) Construct dual spacetime metric and use geodesic principle.

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	
000	000	000000	000	00	
Clobal Parameters					

Interpretation

- Integration constants \Rightarrow affect Hamiltonian.
- Test matter fields 'feel' integration constants through minimal coupling to SD Hamiltonian.
- \therefore integration constants parametrize propagation of test fields in SD.

Methodology

(At least) 2 perspectives:

- (Rigorous) Minimally couple matter to SD, take zero back-reaction limit, analyse propagation of fields.
- (Trick) Construct dual spacetime metric and use geodesic principle.

 \Rightarrow pick option 2!

A Shar	A Shape Dynamics Solution						
000	000	000000	000	00			
	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions			

Assume static (N, N^a , ϕ) (NOT most general sol'n) ¹

¹Gomes 2014 and sg-Forbes (in preparation)

A Change Dymension Calution					
000	000	000000	000	00	
	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	

Assume static (N, N^a, ϕ) (NOT most general sol'n) ¹

Dual Spacetime Metric

PDE's for (ϕ, N) :

$$\nabla^2 \Omega = 0 \qquad \nabla^2 (\Omega N) = 0, \qquad (2)$$

where $\Omega = \log \phi$.

¹Gomes 2014 and sg-Forbes (in preparation)

A Change Dymension Calution					
000	000	000000	000	00	
	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	

Assume static (N, N^a, ϕ) (NOT most general sol'n) ¹

Dual Spacetime Metric

PDE's for (ϕ, N) : $\nabla^2 \Omega = 0$ $\nabla^2 (\Omega N) = 0$,

where $\Omega = \log \phi$.

General Solution:

$$\Omega = a \left(1 + b/r \right) \qquad \qquad N\Omega = c \left(1 + d/r \right) \,. \tag{3}$$

(2)

¹Gomes 2014 and sg-Forbes (in preparation)

A Change Dymension Calution					
000	000	000000	000	00	
	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	

Assume static (N, N^a, ϕ) (NOT most general sol'n)¹

Dual Spacetime Metric

PDE's for (ϕ, N) :

$$\nabla^2 \Omega = 0 \qquad \nabla^2 (\Omega N) = 0, \qquad (2)$$

where $\Omega = \log \phi$.

General Solution:

$$\Omega = a \left(1 + b/r \right) \qquad \qquad N\Omega = c \left(1 + d/r \right) \,. \tag{3}$$

Time units $\Rightarrow a = 1$, Spatial units $\Rightarrow c = 1$, Consistency $\Rightarrow d = -r$

¹Gomes 2014 and sg-Forbes (in preparation)

A Charac D service Calaties					
000	000	000000	000	00	
	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	

Assume static (N, N^a, ϕ) (NOT most general sol'n)¹

Dual Spacetime Metric

PDE's for (ϕ, N) :

$$\nabla^2 \Omega = 0 \qquad \nabla^2 (\Omega N) = 0, \qquad (2)$$

where $\Omega = \log \phi$.

General Solution:

$$\Omega = a \left(1 + b/r \right) \qquad \qquad \mathsf{N}\Omega = c \left(1 + d/r \right) \,. \tag{3}$$

Time units $\Rightarrow a = 1$, Spatial units $\Rightarrow c = 1$, Consistency $\Rightarrow d = -r$

$$\Rightarrow H_{SD} = 2b - \frac{2b^2}{r}$$

¹Gomes 2014 and sg-Forbes (in preparation)

A Charac D service Calaties					
000	000	000000	000	00	
	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	

Assume static (N, N^a, ϕ) (NOT most general sol'n)¹

Dual Spacetime Metric

PDE's for (ϕ, N) :

$$\nabla^2 \Omega = 0 \qquad \nabla^2 (\Omega N) = 0, \qquad (2)$$

where $\Omega = \log \phi$.

General Solution:

$$\Omega = a \left(1 + b/r \right) \qquad \qquad N\Omega = c \left(1 + d/r \right) \,. \tag{3}$$

Time units $\Rightarrow a = 1$, Spatial units $\Rightarrow c = 1$, Consistency $\Rightarrow d = -r$

$$\Rightarrow H_{SD} = 2b - \frac{2b^2}{r}$$

Compare to ADM energy $\Rightarrow b = m/2$, where $m \equiv$ ADM energy.

¹Gomes 2014 and sg-Forbes (in preparation)

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions		
000	000	000000	000	00		
Trave	Traversable Warmhole in SD?					

A dual spacetime metric to the SD solution:

$$ds^{2} = -\left(\frac{1-m/2r}{1+m/2r}\right)^{2} dt^{2} + (1+m/2r)^{4} \left(dr^{2} + r^{2}d\Omega^{2}\right)$$
(4)

This is metric for an Einstein-Rosen bridge.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00
Trave	rsable Warmhole i			

A dual spacetime metric to the SD solution:

$$ds^{2} = -\left(\frac{1-m/2r}{1+m/2r}\right)^{2} dt^{2} + (1+m/2r)^{4} \left(dr^{2} + r^{2}d\Omega^{2}\right)$$
(4)

This is metric for an Einstein-Rosen bridge.

Traversable Warmhole?

In spacetime picture:

•
$$\sqrt{-g} = 0$$
 when $r = m/2$ (horizon).

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00
Trave	rsable Warmhole i			

A dual spacetime metric to the SD solution:

$$ds^{2} = -\left(\frac{1-m/2r}{1+m/2r}\right)^{2} dt^{2} + (1+m/2r)^{4} \left(dr^{2} + r^{2}d\Omega^{2}\right)$$
(4)

This is metric for an Einstein-Rosen bridge.

Traversable Warmhole?

In spacetime picture:

•
$$\sqrt{-g} = 0$$
 when $r = m/2$ (horizon).

•
$$G_{00}(r = m/2) \propto \delta(r - m/2)$$

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	
000	000	000000	000	00	
Traversable Warmhole in SD?					

raversable Warmhole in SD?

A dual spacetime metric to the SD solution:

$$ds^{2} = -\left(\frac{1-m/2r}{1+m/2r}\right)^{2} dt^{2} + (1+m/2r)^{4} \left(dr^{2} + r^{2}d\Omega^{2}\right)$$
(4)

This is metric for an Einstein-Rosen bridge.

Traversable Warmhole?

In spacetime picture:

• $\sqrt{-g} = 0$ when r = m/2 (horizon).

•
$$G_{00}(r = m/2) \propto \delta(r - m/2)$$
.

• Sourced by "exotic" matter in spacetime picture.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	
000	000	000000	000	00	
Traversable Marmhole in SD2					

Iraversable Warmhole in SD?

A dual spacetime metric to the SD solution:

$$ds^{2} = -\left(\frac{1-m/2r}{1+m/2r}\right)^{2} dt^{2} + (1+m/2r)^{4} \left(dr^{2} + r^{2}d\Omega^{2}\right)$$
(4)

This is metric for an Einstein-Rosen bridge.

Traversable Warmhole?

In spacetime picture:

•
$$\sqrt{-g} = 0$$
 when $r = m/2$ (horizon).

•
$$G_{00}(r = m/2) \propto \delta(r - m/2).$$

• Sourced by "exotic" matter in spacetime picture.

But, shape dynamics solution and parameters are all finite!

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	
000	000	000000	000	00	
Traversable Marmhole in SD2					

Iraversable Warmhole in SD?

A dual spacetime metric to the SD solution:

$$ds^{2} = -\left(\frac{1-m/2r}{1+m/2r}\right)^{2} dt^{2} + (1+m/2r)^{4} \left(dr^{2} + r^{2}d\Omega^{2}\right)$$
(4)

This is metric for an Einstein-Rosen bridge.

Traversable Warmhole?

In spacetime picture:

•
$$\sqrt{-g} = 0$$
 when $r = m/2$ (horizon).

•
$$G_{00}(r = m/2) \propto \delta(r - m/2).$$

• Sourced by "exotic" matter in spacetime picture.

But, shape dynamics solution and parameters are all finite!

 \Rightarrow 'exotic' nature of matter is conformal.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions	
000	000	000000	000	00	
Traversable Marmhole in SD2					

Iraversable Warmhole in SD?

A dual spacetime metric to the SD solution:

$$ds^{2} = -\left(\frac{1-m/2r}{1+m/2r}\right)^{2} dt^{2} + (1+m/2r)^{4} \left(dr^{2} + r^{2}d\Omega^{2}\right)$$
(4)

This is metric for an Einstein-Rosen bridge.

Traversable Warmhole?

In spacetime picture:

•
$$\sqrt{-g} = 0$$
 when $r = m/2$ (horizon).

•
$$G_{00}(r = m/2) \propto \delta(r - m/2).$$

• Sourced by "exotic" matter in spacetime picture.

But, shape dynamics solution and parameters are all finite!

 \Rightarrow 'exotic' nature of matter is conformal.

 \therefore SD ontology suggests that the Einstein–Rosen bridge is physical!

QUANTUM CONSEQUENCES (??)

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions		
			000			
Possible	Possible Quantum Consequences I					

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions		
000	000	000000	000	00		
Possible	Possible Quantum Consequences I					

1. Standard

Non-Gaussian (and highly non-local) UV-Fixed Point:

$$\mathsf{Conf}(3,1) \sim \mathsf{SO}(4,2) \overset{(\mathsf{soft}) \text{ breaking}}{\longrightarrow} \mathsf{ISO}(3,1)$$

Possible	Possible Quantum Consequences I					
000	000	000000	000	00		
	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions		

1. Standard

Non-Gaussian (and highly non-local) UV-Fixed Point:

$$\mathsf{Conf}(3,1) \sim \mathsf{SO}(4,2) \overset{(\mathsf{soft}) \text{ breaking}}{\longrightarrow} \mathsf{ISO}(3,1)$$

Shape Dynamics: Conf(3) \sim SO(4,1) \in SO(4,2) is a residual "finger print" of UV.

Possibl	e Quantum Cons	equences		
000	000	000000	000	00
	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

1. Standard

Non-Gaussian (and highly non-local) UV-Fixed Point:

$$\mathsf{Conf}(3,1) \sim \mathsf{SO}(4,2) \overset{(\mathsf{soft}) \text{ breaking}}{\longrightarrow} \mathsf{ISO}(3,1)$$

Shape Dynamics: $Conf(3) \sim SO(4, 1) \in SO(4, 2)$ is a residual "finger print" of UV.

 \Rightarrow non-local Conf(3) could help to characterise non-local Conf(3,1)?!

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00
Possible	Quantum Consequ	iences II		

Symmetry: Foliation-preserving conformal diffeomorphisms.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00
Possible	Quantum Consequ	iences II		

Symmetry: Foliation-preserving conformal diffeomorphisms.

UV-Fixed Point is *local* Conf(3)

Possible	Quantum Consequ	iences II		
000	000	000000	000	00
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

Symmetry: Foliation-preserving conformal diffeomorphisms.

UV-Fixed Point is *local* Conf(3)

Relevant deformation (UV): $(Cotton)^2$

Possible	Quantum Conse	quences II		
000	000	000000	000	00
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

Symmetry: Foliation-preserving conformal diffeomorphisms.

```
UV-Fixed Point is local Conf(3)
```

```
Relevant deformation (UV): (Cotton)<sup>2</sup>
```

 \Rightarrow anisotropic scaling (+ detailed balance)

Possible	Quantum Conse	quences II		
000	000	000000	000	00
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

Symmetry: Foliation-preserving conformal diffeomorphisms.

```
UV-Fixed Point is local Conf(3)
```

```
Relevant deformation (UV): (Cotton)<sup>2</sup>
```

- \Rightarrow anisotropic scaling (+ detailed balance)
- ... Power Counting Renormalizable!

Possible	Quantum Conse	equences II		
			000	
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

Symmetry: Foliation-preserving conformal diffeomorphisms.

```
UV-Fixed Point is local Conf(3)
```

```
Relevant deformation (UV): (Cotton)<sup>2</sup>
```

 \Rightarrow anisotropic scaling (+ detailed balance)

... Power Counting Renormalizable!

New Aspirations:

• New theory space and field content.

Possible	Quantum Consec	quences II		
000	000	000000	000	00
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

Symmetry: Foliation-preserving conformal diffeomorphisms.

```
UV-Fixed Point is local Conf(3)
```

```
Relevant deformation (UV): (Cotton)<sup>2</sup>
```

 \Rightarrow anisotropic scaling (+ detailed balance)

... Power Counting Renormalizable!

New Aspirations:

- New theory space and field content.
- RG-Flow between local UV and non-local IR fixed points.

Possible	Quantum Consec	quences II		
000	000	000000	000	00
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

Symmetry: Foliation-preserving conformal diffeomorphisms.

```
UV-Fixed Point is local Conf(3)
```

```
Relevant deformation (UV): (Cotton)<sup>2</sup>
```

 \Rightarrow anisotropic scaling (+ detailed balance)

... Power Counting Renormalizable!

New Aspirations:

- New theory space and field content.
- RG-Flow between local UV and non-local IR fixed points.
- Conformal invariance is maintained throughout RG-flow.

Possibl	e Quantum Conse	eauences II		
000	000	000000	000	00
Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions

Symmetry: Foliation-preserving conformal diffeomorphisms.

```
UV-Fixed Point is local Conf(3)
```

```
Relevant deformation (UV): (Cotton)<sup>2</sup>
```

 \Rightarrow anisotropic scaling (+ detailed balance)

... Power Counting Renormalizable!

New Aspirations:

- New theory space and field content.
- RG-Flow between local UV and non-local IR fixed points.
- Conformal invariance is maintained throughout RG-flow.
- No conformal anomaly in 3d.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
				••
Summar	y / Conclusions			

• There is a foliation of ADM where the gauge-invariant degrees of freedom are conformally invariant.

000	OOO	Quantum Consequences	●O
Summar	y / Conclusions		

- There is a foliation of ADM where the gauge-invariant degrees of freedom are conformally invariant.
- This suggests an ontological shift to Shape Dynamics motivated by:
 - The fact that only ratios of lengths are observable.

000	OOO	Quantum Consequences	●O
Summar	y / Conclusions		

- There is a foliation of ADM where the gauge-invariant degrees of freedom are conformally invariant.
- This suggests an ontological shift to Shape Dynamics motivated by:
 - The fact that only ratios of lengths are observable.
 - Fixed points are conformal.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
				•0
Summar	y / Conclusions			

- There is a foliation of ADM where the gauge-invariant degrees of freedom are conformally invariant.
- This suggests an ontological shift to Shape Dynamics motivated by:
 - The fact that only ratios of lengths are observable.
 - Fixed points are conformal.
- Classical: global differences suggest new physics \Rightarrow traversable warmhole.

	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
				•0
Summar	y / Conclusions			

- There is a foliation of ADM where the gauge-invariant degrees of freedom are conformally invariant.
- This suggests an ontological shift to Shape Dynamics motivated by:
 - The fact that only ratios of lengths are observable.
 - Fixed points are conformal.
- Classical: global differences suggest new physics \Rightarrow traversable warmhole.
- Semi-Classical: Information loss in SD black holes?

Intro	Shape Dynamics Basics	Classical Consequences	Quantum Consequences	Summary / Conclusions
000	000	000000	000	00
Summar	y / Conclusions			

- There is a foliation of ADM where the gauge-invariant degrees of freedom are conformally invariant.
- This suggests an ontological shift to Shape Dynamics motivated by:
 - The fact that only ratios of lengths are observable.
 - Fixed points are conformal.
- Classical: global differences suggest new physics \Rightarrow traversable warmhole.
- Semi-Classical: Information loss in SD black holes?
- Quantum: new proposal for UV fixed point.

THANK YOU!