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Intro Shape Dynamics Basics Classical Consequences Quantum Consequences Summary / Conclusions

Conformal Symmetry in Gravity?

Why?

1 No dimensionful quantities.

2 UV fixed point ⇒ conformal.
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Shape Dynamics

Claim

∃ foliation where gauge-invariant observables of GR are 3d conformally (Weyl)
invariant.

g
(3)
ab → eφ(x)g

(3)
ab

Caveat: IR is (nearly) CONFORMAL. (But non-local!)

⇒ Ontological Shift: Only conformal degrees of freedom are fundamental!

Ignoring scale can lead to important global differences.
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The Road to Shape Dynamics

ADM → Linking Theory
1 Phase space extension: Γ(gab;πab)→ Γe(gab, φ;πab, πφ)

2 Canonical transformation: gab → e4φgab, πab → e−4φπab, φ→ φ,
πφ → πφ − 4gabπ

ab

Constraints: H(e4φgab, e
−4φπab), Ha(e4φgab, e

−4φπab), C ≡ πφ− 4gabπ
ab.

Interpretation: Conformally compensated ADM.
C generates canonical transformation.

Linking Theory → ADM
⇒ Gauge fixing φ = 0 of C = 0.

Linking Theory → Shape Dynamics
Gauge fixing πφ = 0 of H(e4φgab, e

−4φπab) = 0
Solve Hamiltonian constraint for conformal factor (elliptic equation).
∴ fixes foliation in Linking Theory.

⇒ C = 0 becomes gabπ
ab = 0 (generator of conformal transformations)!

Shape Dynamics → Dictionary (ADM in CMC)
⇒ H(gab, π

ab) = 0 gauge fixes π = 0 (elliptic equation).

∴ a conformal gauge of Shape Dynamics is equivalent to a foliation of ADM!
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Overall Picture

Shape Dynamics and ADM share a common gauge

Take home messages:
Shape Dynamics is constructed by solving two elliptic differential
equations for φ (H gauge fixing) and N (propagation of gabπ

ab = 0).
A non-trivial SD Hamiltonian is only obtained by putting a global
restriction on φ:

For ∂Σ = 0 topology: vol(gab) = vol(e−4φgab).
For open Σ: fall-off conditions on φ (e.g., asymptotically flat)

⇒ dimensional constants are smuggled in!
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Consequences: Classical

Locally Shape Dynamics is equivalent to GR.

but

Globally solutions of both theories can differ!

Examples

Kruskal ⇒ (Traversable) Einstein–Rosen bridge.
⇒ singularity containing region is excluded!

N-body dynamics projected on shape space is dissipative.
⇒ Arrow of Time.

Others??
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Spherically Symmetric Shape Dynamics

Spherically Symmetric Ansatz

General spacetime Ansatz:

ds2 = −N2dt2 + A2dr 2 + B2dΩ2 .

If we choose (coordinate transformation)

A = e2φ B = re2φ (1)

Then
g

(3)
ab = e4φ(x)Diag(1, r 2, r 2 sin2 θ)ab

⇒ general spherically symmetric spatial metric is conformally flat!

But: φ is gauge in Shape Dynamics!

⇒ Spherically Symmetric SD is static conformal geometry!
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Global Parameters

Integration constants for (N, φ) in SD Hamiltonian?

Interpretation

Integration constants ⇒ affect Hamiltonian.

Test matter fields ‘feel’ integration constants through minimal coupling to
SD Hamiltonian.

∴ integration constants parametrize propagation of test fields in SD.

Methodology

(At least) 2 perspectives:

1 (Rigorous) Minimally couple matter to SD, take zero back-reaction limit,
analyse propagation of fields.

2 (Trick) Construct dual spacetime metric and use geodesic principle.

⇒ pick option 2!
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A Shape Dynamics Solution

Assume static (N,Na, φ) (NOT most general sol’n) 1

Dual Spacetime Metric

PDE’s for (φ,N):

∇2Ω = 0 ∇2(ΩN) = 0 , (2)

where Ω = log φ.

General Solution:

Ω = a (1 + b/r) NΩ = c (1 + d/r) . (3)

Time units ⇒ a = 1, Spatial units ⇒ c = 1, Consistency ⇒ d = −r

⇒ HSD = 2b − 2b2

r

Compare to ADM energy ⇒ b = m/2, where m ≡ ADM energy.

1Gomes 2014 and sg-Forbes (in preparation)
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Traversable Warmhole in SD?

A dual spacetime metric to the SD solution:

ds2 = −
(

1−m/2r

1 + m/2r

)2

dt2 + (1 + m/2r)4
(

dr 2 + r 2dΩ2
)

(4)

This is metric for an Einstein–Rosen bridge.

Traversable Warmhole?

In spacetime picture:
√
−g = 0 when r = m/2 (horizon).

G00(r = m/2) ∝ δ(r −m/2).

Sourced by “exotic” matter in spacetime picture.

But, shape dynamics solution and parameters are all finite!

⇒ ‘exotic’ nature of matter is conformal.

∴ SD ontology suggests that the Einstein–Rosen bridge is physical!
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Possible Quantum Consequences I

2 Scenarios: (Standard QFT)

1. Standard

Non-Gaussian (and highly non-local) UV-Fixed Point:

Conf(3, 1) ∼ SO(4, 2)
(soft) breaking−→ ISO(3, 1)

Shape Dynamics: Conf(3) ∼ SO(4, 1) ∈ SO(4, 2) is a residual “finger print” of
UV.

⇒ non-local Conf(3) could help to characterise non-local Conf(3, 1)?!

59 / 78



Intro Shape Dynamics Basics Classical Consequences Quantum Consequences Summary / Conclusions

Possible Quantum Consequences I

2 Scenarios: (Standard QFT)

1. Standard

Non-Gaussian (and highly non-local) UV-Fixed Point:

Conf(3, 1) ∼ SO(4, 2)
(soft) breaking−→ ISO(3, 1)

Shape Dynamics: Conf(3) ∼ SO(4, 1) ∈ SO(4, 2) is a residual “finger print” of
UV.

⇒ non-local Conf(3) could help to characterise non-local Conf(3, 1)?!

60 / 78



Intro Shape Dynamics Basics Classical Consequences Quantum Consequences Summary / Conclusions

Possible Quantum Consequences I

2 Scenarios: (Standard QFT)

1. Standard

Non-Gaussian (and highly non-local) UV-Fixed Point:

Conf(3, 1) ∼ SO(4, 2)
(soft) breaking−→ ISO(3, 1)

Shape Dynamics: Conf(3) ∼ SO(4, 1) ∈ SO(4, 2) is a residual “finger print” of
UV.

⇒ non-local Conf(3) could help to characterise non-local Conf(3, 1)?!

61 / 78



Intro Shape Dynamics Basics Classical Consequences Quantum Consequences Summary / Conclusions

Possible Quantum Consequences I

2 Scenarios: (Standard QFT)

1. Standard

Non-Gaussian (and highly non-local) UV-Fixed Point:

Conf(3, 1) ∼ SO(4, 2)
(soft) breaking−→ ISO(3, 1)

Shape Dynamics: Conf(3) ∼ SO(4, 1) ∈ SO(4, 2) is a residual “finger print” of
UV.

⇒ non-local Conf(3) could help to characterise non-local Conf(3, 1)?!

62 / 78



Intro Shape Dynamics Basics Classical Consequences Quantum Consequences Summary / Conclusions

Possible Quantum Consequences II

2. Non-Standard (‘Hǒrava–Lifshitz-like’)

Symmetry: Foliation-preserving conformal diffeomorphisms.

UV-Fixed Point is local Conf(3)

Relevant deformation (UV): (Cotton)2

⇒ anisotropic scaling (+ detailed balance)

∴ Power Counting Renormalizable!

New Aspirations:

New theory space and field content.

RG-Flow between local UV and non-local IR fixed points.

Conformal invariance is maintained throughout RG-flow.

No conformal anomaly in 3d.
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Summary / Conclusions

There is a foliation of ADM where the gauge-invariant degrees of freedom
are conformally invariant.

This suggests an ontological shift to Shape Dynamics motivated by:
The fact that only ratios of lengths are observable.
Fixed points are conformal.

Classical: global differences suggest new physics ⇒ traversable warmhole.

Semi-Classical: Information loss in SD black holes?

Quantum: new proposal for UV fixed point.
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