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Some comments on causality Causality in space-time

Causality in relativity theory

Special Relativity

[Wikipedia]

Digression:

The formalism of SR allows for ‘tachions’.
[G. Feinberg, Phys. Rev. 159 1085 (1967)]

n-particle state (vacuum in particular) is not
Lorentz invariant.

General Relativity

[R. Penrose, Road to Reality, 2004]

Chronology protection conjecture [Hawking]:
causality, strong causality, stable causality, global hyperbolicity.
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Some comments on causality Causality in quantum theory

Causality in quantum theory

Causality in quantum mechanics

Initial controversies surrounding entangled states.

[R. Penrose, Road to Reality, 2004]

QI theorems: no-cloning, no-signalling, information causality, . . .
Non-locality 6= causality violation!

Causality in quantum field theory

Dirac and Klein–Gordon propagators vanish outside the light cone.
Microscopic causality [Wightman, Kastler–Haag ]:

“Observables with space-like separated supports commute.”

Causality in quantum gravity?
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Some comments on causality Causality from mathematician’s viewpoint

Causality from mathematician’s viewpoint

Causality – a partial order relation between points of space-time (events).

p � q ⇐⇒ ∃ future directed causal curve γ from p to q (or p = q).

Properties:

Induced by a Lorentzian metric on a manifold.

Possible only in Lorentzian signature!

Causality is not specific to GR, it can be defined in any metric theory based
on Lorentzian manifolds.
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Noncommutative geometry Basic ideas

Basic idea

locally compact Hausdorff Gelfand–Naimark thm←−−−−−−−−−−−−→
commutative

topological spaces C∗-algebras

(pseudo)-Riemannian Connes’ Reconstruction Thm←−−−−−−−−−−−−−−−−−→
commutative

smooth manifolds spectral triples

noncommutative :=←−− noncommutative
space(-times) spectral triples
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Noncommutative geometry Basic ideas

Topology ←→ C∗-algebras

C∗-algebras

(A,+, ·) is an algebra with

(
A = C(X,C) with (f · g)(x) = f(x)g(x)

)

an involution ∀ a ∈ A ∃ a∗ ∈ A,

(
f∗(x) := f(x)

)

a complete norm ‖·‖ : A → R+,

(
‖f‖∞ = supx∈X |f(x)|

)

the C∗-property: ‖aa∗‖ = ‖a‖2 (in general we only have ‖aa∗‖ ≤ ‖a‖2).

Commutative Gelfand – Naimark theorem

commutative C∗-algbras
1:1←→ (locally) compact Hausdorff topological spaces

Noncommutative Gelfand – Naimark theorem [1943]

noncommutative C∗-algbras
1:1←→ bounded operators on a Hilbert space
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Noncommutative geometry Basic ideas

Geometry ←→ Dirac operators

Consider a smooth (compact) spin Riemannian manifold M .

Take H = L2(M,S) and D/ = −iγµ∇Sµ = −iγµ(∂µ + ωµ).

What is D/ good for?

1 Its spectrum encodes the dimension of M .

#{λ(|D/ |) < Λ} ∼ cn ·Vol(M)Λn, as Λ→∞, with n = dimM

2 It gives you differential forms: f [D/ , g], f, g,∈ C(M).

3 It tells you how to integrate functions [Connes’ Trace Thm].∫
− f |D/ |−n := Res

s=n
Tr f |D/ |−s = Cn

∫
M

f(x)dµg(x), ∀ f ∈ C(M).

4 It provides the geodesic distance.

dg(x, y) = inf
γ:[0,1]→M

{l(γ) : γ(0) = x, γ(1) = y}

= sup
f∈C(M)

{|f(x)− f(y)| : ‖[D/ , f ]‖ ≤ 1}
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Noncommutative geometry Basic ideas

Spectral triples

(A,H,D) – spectral triple

A – pre-C∗-algebra (unital)

H – Hilbert space, ∃ a faithful representation π(A) ⊂ B(H)

D – the Dirac operator – selfadjoint, unbounded

|D|−1 – is a compact operator
[D, π(a)] ∈ B(H) for all a ∈ A

In the Lorentzian setting: need for indefinite product.

Hilbert space  Krein space

〈·, ·〉  (·, ·) = 〈·, J·〉

J – fundamental symmetry operator – captures the signature.

For a Lornetzian manifold J = γ0 ⇒ ψ = ψ†γ0.
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Noncommutative geometry Causality in the space of states

States

Noncommutative spaces admit only a global description.

What is an event? Idea: [N. Franco, M.E. (2013)] Use states.

States S(A) = {ϕ} on a C∗-algebra A:

positive linear functionals with ‖ϕ‖ = 1.
P (A) – extremal points of S(A) – pure states.

Mathematical motivation:

If A = C0(M) then P (A) 'M by ϕp(a) = a(p).
S(A) – probability measures on M .

Physical motivation:

A – C∗-algebra generated by observables of a system,
S(A) – states of the system,
ϕ(a) ∈ R – expectation value of a ∈ A in a state φ ∈ S(A).
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Noncommutative geometry Causality in the space of states

Algebraisation of causality

p � q ⇐⇒ ∃ future directed causal curve γ from p to q (or p = q).

Algebraisation:

1 Events ! pure states of A = C∞c (M) ⊂ C0(M).

2 Dualisation:

Causal function – C 3 f : M → R non-decreasing along every future
directed causal curve.

p � q ⇐⇒ ∀a∈C⊂A a(p) ≤ a(q)

3 Algebraic characterisation of C ⊂ A

a ∈ C ⇐⇒ ∀φ∈H (φ, [D, a]φ) ≤ 0.
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Noncommutative geometry Causality in the space of states

Causality in the space of states

Definition [N. Franco, M.E. (2013)]

(A,H,D) – Lorentzian spectral triple. For φ, ξ ∈ S(A),

φ � ξ ⇐⇒ ∀a∈C⊂A φ(a) ≤ ξ(a).

Theorem [N. Franco, M.E. (2013)]

M – globally hyperbolic space-time, (AM ,HM ,D/ ) – spectral triple associated
(canonically) with M . Then,

P (AM ) 'M

and for φp, φq ∈ P (AM ) we have

φp � φq ⇐⇒ p � q in M.
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Noncommutative geometry An example: two-sheeted space-time and Zitterbewegung

Almost commutative space-times

Finite spectral triples:

AF − matrix algebra , HF = CN , DF = D†F ∈MN (C).

Almost commutative geometries:

A = AM ⊗AF , H = HM ⊗HF , D = D/ ⊗ 1 + γ5 ⊗DF .

Motivation – applications in particle physics!

AF = C⊕H⊕M3(C), DF – mass matrix & mixing.
⇒ full Lagrangian of the Standard Model on curved space-time.
Phenomenological predictions: particles physics, cosmology.

Almost commutative space-times:

Pure states of A = AM ⊗AF are separable, i.e. P (A) 'M ×F .
If (p, φ) � (q, ξ) then p � q on M.
⇒ No violation of classical causality!
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Noncommutative geometry An example: two-sheeted space-time and Zitterbewegung

Two-sheeted space-time

AF = C⊕ C,

HF = C2,

DF =
(

0 im
−im 0

)
.

P (A) = M × {0, 1} = M tM .

Theorem [N. Franco, M.E. 2015b]

(p, 0) � (q, 1) iff p � q in M and

τ(γ) ≥ π

2m
,

where τ(γ) – proper time.
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Two-sheeted space-time

S(A) – probabilistic measures on M tM .

‘Internal’ mixed states: M × [0, 1] ⊂ S(A).
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Noncommutative geometry An example: two-sheeted space-time and Zitterbewegung

Zitterbewegung

Zitterbewegung – the ‘trembling motion of the electron’.

Free Dirac equation i~γµ∂µψ −mcψ = 0.

Chirality γ5ψL,R = ±ψL,R eigenstates: i~γµ∂µψL,R = mcψR,L.

In rest frame: TZB = π~
mc2 .

[Penrose (2004)] [Brout (2001)] [M.E., N. Franco, T. Miller (2015c)]
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Noncommutative geometry An example: two-sheeted space-time and Zitterbewegung

Zitterbewegung of interacting fermions

Fluctuations of Dirac operator: D  DA = (D/ −A/ )⊗ 1 + γM ⊗ Φ.

SF =
∫
M
dµ
(
ψD/ψ − ψA/ψ − Φψψ

)
Thm [N. Franco, M.E. 2015b]

(p, 0) � (q, 1) iff p � q on M and∫
M

dµ
∣∣Φ∣∣√−gµν γ̇µγ̇ν ≥ π

2
.

Curved space-time!

No impact of the EM field!

‘Higgs’ field acts as a conformal factor!

[R. Penrose, Road to Reality, 2004]
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Summary + an outlook into quantum gravity

Take-home messages

Noncommutative geometry offers a robust framework for physical theories.

Matter does matter! −→ It refines microscopic causality.

Spectral triples for QFT? [Besnard, Rovelli, Verch]

Spectral triples for: fractals, Loop Quantum Gravity, quantum deformations,

The concept of causality in the space of states is universal.

Space-time is not a fundamental concept, events are not observables!

Inherent non-locality in QFT.
Too precise measurements create event horizons [DFR (1994)].

[R. Penrose, Road to Reality, 2004]
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