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Motivation

@ There is a variety of problems in the search for quantum gravity

@ 3d gravity is a simpler version of ordinary general relativity

@ It has no local degrees of freedom i.e. no gravitational waves

@ Dynamics can be reintroduced via a nontrivial spacetime topology
@ The 3d Newton’s constant has the dimension of inverse mass

@ Momentum space of a point particle coupled to 3d gravity is curved

@ Curved momentum space is characteristic to some of the ap-
proaches to quantum gravity, especially “relative locality”
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Particle in 3d gravity Chern-Simons formalism
Particle in spacetime

De Sitter gauge group

For the cosmological constant A > 0 the local isometry group of space-
time is de Sitter group SO(3, 1). lts algebra has the commutators

[J[L7JD] = (E,uya"-l(7 ; [J;u PV] = e,ouPO )

[P, Pl =—Nepod?, (1
where ;,v,0 = 0,1,2. Introducing new generators S, = M—ﬂﬂ €00J”
we may rewrite it as

[J;u Ju] = euuaJU s [Jua Su] = €uvo S+ \/K (T]VOJM - 77;1,1/‘-10) s

[Su, S| = \/K(U#OSV —0Sy) - (2)
Thus group elements v € SO(3, 1) can be locally factorized into
v=js= (s +"J)(&+E"S), 3)

withj € SO(2,1), s € AN(2) and & + J1,0# =1, €5 — 262 = 1. We also
have the natural scalar product

(JuSv) =M (Judv) = (S,S,) =0. (4)
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Particle in 3d gravity Chern-Simons formalism
Particle in flat spacetime

Chern-Simons action of 3d gravity

Instead of the metric g, gravity may be described by the vielbein e
and spin connection w**, defined through

eaueﬁvmw = Qs wa;w _ eﬂuaaeﬁu + eﬁurﬁ(we'w- (5)

For 3d gravity we can introduce the gauge field, which is the Cartan
connection

A=uwhd, +e'P,, (6)

where e = e Fdx® and wH = —%e“ w 27 dx*, and the Einstein-Hilbert

voTo

action can be written as the Chern-Simons gauge theory

S:£/<<dAAA>+;<AA[A,A]>>, 7

with the coupling constant k = J.
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Particle in 3d gravity Chern-Simons formalism
Particle in flat spacetime

Coupling of a particle to 3d gravity

If we separate time R and space S then A may be splitinto A = A;dt +
As. The action of gravity with a point particle is given by

S:/dthﬁ/dt/ <AS/\A3>—/dt<Ch—1h>+
/dt/< ( Fs—hCh™ 162(y)dy1/\dy2)>. (8)

The algebra element C = mJy + s Sy encodes the particle’s mass m
and spin s and the group element h describes the particle’s motion.
The spatial curvature Fs = dAs + [As, Ag] satisfies the constraint

pFs = hC ™ (7) dy' A dy?. ©)

i.e. vanishes everywhere except a singularity at the particle’s worldline.
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Particle in 3d gravity Chern-Simons formalism
Particle in spacetime

Alekseev-Malkin construction

Space S may be decomposed into the disc D surrounding the particle,
with coordinates r € [0,1], ¢ € [0,2x], and the asymptotic empty
region & (for r > 1), with the common boundary ' at r = 1. Solving
the curvature constraint we find that on £ the connection has the form

AS) = ydy (10)

while on D it is given by
D _1 - e _
Afg)——'ykad(,b’y 1+”ydfy T F¥r=0)=h, (11)

where v, ¥ are some gauge group elements. The continuity of Ag
across I, i.e. A(SD)|r = A(Sg)|r leads to the sewing condition

7 'Ir = Nex®yr, (12)

where N = N(t) is an arbitrary gauge group element.
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Particle in 3d gravity
Particle in flat spacellme

Poincaré gauge group

In the limit A — 0 the group SO(3,1) becomes the Poincaré group
1SO(2,1) ~ 50(2,1)* x SO(2,1), s0(2,1)* ~ R3, with the algebra

s bl = €uvad”, s Pl = €uoP?, [Py, P]=0. (13)
Group elements v € ISO(2, 1) are factorized into
v=ip=(e+)+EP), (14)
with j € SO(2,1), £ = £2P; € s0(2,1)*, and the group multiplication
Y1) =imie) (1 +Ad(ig) 1) + 5(2)) : (15)
The scalar product again has the form

(JuPo) =y (Judy) = (P.P,) = 0. (16)
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Particle in 3d gravity

Effective particle Lagrangian

We can now put the Lagrangian in the boundary form
k .1 i CJ 17 = Cp 1T
=5 - - - 17
L 27r/r<J jd€ —j Jd€+kd¢[1 J,§}+kd¢>1 i), (17)
where Cy = mdJy, Cp = s Py = §Sp. The sewing condition splits into
i =ner®Tt . —Ad(nT)E = v — Ad(eF“?)E+ LCpo, (18)

where N = (1 +v)n, n € SO(2,1), v € s0(2,1)*. Substituting these
conditions and denoting x = % we eventually obtain the Lagrangian

L=k (ﬁ‘”’l) X" +s(n"'n)
"

(19)

0 )

with the particle’s position x = nén~" € so0(2,1)* and momentum
N=nex%n~"cS0(2,1).
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Particle in 3d gravity
Particle in flat spacellme

Properties of the gravitating particle

The parallel transport around the particle is described by the holonomy
of the connection Ag along the boundary I', which is given by

holr (As) = (¢ =0)7~'(¢ =27) =
N1+ (AN~ = 1) x+Ad(N~N)jlcs ) . (20)

In particular, i(¢ = 0)j~'(¢ = 27) = M. The momentum manifold
S0O(2,1) is 3d anti-de Sitter space. Using the parametrization N = ps+

1 ptd,, where ps = /1 — ;5 p.p*, we find the mass shell condition

o m
p.p" = 4r?sin® o (21)
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Particle in 3d gravity

Properties of the gravitating particle — cont.

Let us restrict to the spinless case. With x = x#P,, and the Lagrange
multiplier A we may rewrite the effective Lagrangian as

L=- (psb,t — P3Py — 21; e;mb”p") xt—
A (pup“ _ 4k2 sin? %) . 22)
It still leads to the equations of motion of a free relativistic particle
Xt =2 p",  p,=0 (23)
and in the limit « — co we recover the free particle Lagrangian

L= —pux* —X(p.p" —mP) . (24)
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Particle in 3d gravity Cher r
Particle in flat spacellme

The case of multiple particles

The Chern-Simons Lagrangian for a system of n particles has the form

Lim = % /5 (As A As) - Z (Gt ')+

i=1
k n
/ Ai| 5=Fs— Y _hCih"*(y — y)dy' ndy? | ) . (25)
S 2m i=1
We may divide S into n particle discs D; and the empty polygon €&,

whose edges I'; coincide with the boundaries of D;’'s. On each D; the
connection is given by

AL =i c,dm, +3d5, ", A(n=0)=h.  (26)
Then for the /’th particle we can derive

L= (17 I'I,-)ux,“ +s; (ni_1ﬁ,->0 . (27)
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Particle in 3d gravity Chern ons formalism
Particle in flat spacetime

The case of multiple particles — cont.

Imposing the continuity at the polygon’s vertices, v(¢; 1 = 0) = v(¢; =
27) and fixing v(¢1 = 0) = 1 we obtain the sequence of conditions

iy =1, ngj, | =My, ngjg | = MMy, ces (28)

where [1; = j;ex™%j~". Using them we find the n-particle Lagrangian

Liny = z”: (li (ﬁ,-_1|=|i)#)_(f + i (17711’;/')0) +
p
K (ﬁ51ﬁ1—1ﬁ1ﬁ2 _ ﬁ;1ﬁ1>ﬂ)‘(5 ts (;51|=|1—1ﬁ1§2)0 Yo (29)

where x; =3
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New particle limit

Alternative contraction of SO(3,1)

Let us rescale the s0(3,1) generators to J, = VAJ,, P, = 1/VAP,
and define S, = I5M + euo,,:/”. In the limit A — 0 we obtain the algebra

[Juv ..N/,,] =0, [:Iu» *NSV] = 7]1/0:/# - 77;w'~70 s
[élu SV] = ﬁuoéu - 771/0:9“ . (30)

It generates the group AN(2) x an(2)*, whose elements are
y=is=(1+00)(& +€"S.), (31)
with s € AN(2), ¢ = wf/,t € an(2)* ~ RR3, and the group multiplication
Yyve) = (14 1) + Ad(s1)) 1@)) 5(1)5(2) - (32)
The corresponding scalar product is

<‘7A“~Su> = Nuv » <:ju:jv> = <‘~sw~su> =0. (33)
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New particle limit

New effective particle Lagrangian

We also have to exchange the labels of mass and spin so that C- = s Jp
and Cz = mSy. Then we put the Lagrangian in the boundary form

: 1 1 .
_ K EO N e =1 ! =1z
L= 27T/F<JJ (dss 5 dequ ) + dengs 5> ,  (34)

where we denote 7 =j~'j. The sewing condition can be split into
s —verC%5 !, = %% (1—n)s ", (39)

where N = (1 + n)v, v € AN(2), n € an(2)*. Substituting it we obtain
the final Lagrangian

L=x (ﬁ r|—1)ux“ +5(57'5)

(36)

0 )

m
K

with the particle’s momentum I = e#%5—1 ¢ AN(2) and position

x=50""nvs ! c an(2)".
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Properties of the particle

The holonomy of the connection Ag along the boundary I is given by

holr(As) = v(¢ = 0)7 (¢ = 2m) =
(1+(1 —Ad(N)) x + 1c;) N. (37)

In particular, s(¢p = 0)s~'(¢ = 27) = M. The momentum manifold
AN(2) is 3d de Sitter space. Furthermore, using the parametrization
N=eP/rSagh"/nd y = gv'/rSag’/nS g1 2 we find that

p°=m, pP= (1 —e%) v, (38)

i.e.the particle’s energy is fixed to be the rest energy.
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Properties of the particle — cont.

The spin term does not contribute to the equations of motion and we
may restrict to s = 0. With x = x# P, and the Lagrange multiplier A the
particle Lagrangian can be rewritten in the form

L=— (Xopo + Xx%pa — 5_1Xapap0) - A (pcz) - m2) ) (39)

which describes a x-deformed Carroll particle. It gives the equations
of motion of an ordinary Carroll particle

x°=2xm, x32=0, p. =0 (40)
and in the limit x — oo we recover the Carroll particle Lagrangian

L=—x%py — x%pa — X (p§ — mP) . (41)
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Symmetries of the deformed Carroll particle

The particle is invariant under infinitesimal x-deformed Carroll trans-
formations, which include ordinary rotations

X =pex®,  Opa=pespp, X°=0pp=0, (42)
deformed Carrollian boosts
ox% = (1+ &7 "pp) Nax?, 8pPa = —AaPo, ox3=0py =0, (43)
deformed translations
ox0=al,  sx¥F=e”"af,  6p,=0 (44)
and spatial conformal transformations
ox*=nx*,  pa=-npa, Ox°=0pp=0, (45)

where p, Az, o, n denote transformation parameters.
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Multiple particles

At the boundary T'; of each disc D, i = 1,..., nwe find
L= n(h,-n,—‘)#x,us,- (5715*,-)0. (46)

The continuity v(¢;+1 = 0) = v(¢; = 2x) and fixing v(¢1 = 0) = 1
leads to the sequence of conditions

015171 =1, 02§§1 = |=|1 , 03531 = |=|2|=|1 , e (47)
where M; = n,-e%mféﬂnf‘. Then we obtain the n-particle Lagrangian
n JLa—
Liny = Z </<; (I'I/I'I,-_1)”)_(,-“ +5; (Ui_1ﬁi>o> +
i=1
r (Refisny ;" — ﬁuﬁﬁ)ﬂig + 5 (n;mﬁﬁnz)o +..., (48)

where X; = n;.
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@ We rederived the action of a gravitating particle in flat spacetime
@ We obtained the new action of a x-deformed Carroll particle

@ Its momentum space is equivalent to the 3d «-Minkowski momen-
tum space, associated with the x-Poincaré Hopf algebra

@ The relevance of this particle model remains to be understood
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