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Motivation

There is a variety of problems in the search for quantum gravity
3d gravity is a simpler version of ordinary general relativity
It has no local degrees of freedom i.e. no gravitational waves
Dynamics can be reintroduced via a nontrivial spacetime topology
The 3d Newton’s constant has the dimension of inverse mass
Momentum space of a point particle coupled to 3d gravity is curved
Curved momentum space is characteristic to some of the ap-
proaches to quantum gravity, especially “relative locality”
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De Sitter gauge group
For the cosmological constant Λ > 0 the local isometry group of space-
time is de Sitter group SO(3,1). Its algebra has the commutators

[Jµ, Jν ] = εµνσJσ , [Jµ,Pν ] = εµνσPσ ,

[Pµ,Pν ] = −Λ εµνσJσ , (1)

where µ, ν, σ = 0,1,2. Introducing new generators Sµ ≡ Pµ+
√

Λ εµ0νJν

we may rewrite it as

[Jµ, Jν ] = εµνσJσ , [Jµ,Sν ] = εµνσSσ +
√

Λ (ην0Jµ − ηµνJ0) ,

[Sµ,Sν ] =
√

Λ (ηµ0Sν − ην0Sµ) . (2)

Thus group elements γ ∈ SO(3,1) can be locally factorized into

γ = j s = (ι3 + ιµJµ)(ξ3 + ξνSν) , (3)

with j ∈ SO(2,1), s ∈ AN(2) and ι23 + 1
4 ιµι

µ = 1, ξ2
3 −

Λ
4 ξ

2
0 = 1. We also

have the natural scalar product

〈JµSν〉 = ηµν , 〈JµJν〉 = 〈SµSν〉 = 0 . (4)
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Chern-Simons action of 3d gravity

Instead of the metric gαβ gravity may be described by the vielbein e µ
α

and spin connection ω µν
α , defined through

e µ
α e ν

β ηµν = gαβ , ω µν
α = e µ

β ∂αeβν + e µ
β Γβαγeγν . (5)

For 3d gravity we can introduce the gauge field, which is the Cartan
connection

A = ωµJµ + eµPµ , (6)

where eµ = e µ
α dxα and ωµ = − 1

2ε
µ
νσω

νσ
α dxα, and the Einstein-Hilbert

action can be written as the Chern-Simons gauge theory

S =
k

4π

∫ (
〈dA ∧ A〉+

1
3
〈A ∧ [A,A]〉

)
, (7)

with the coupling constant k ≡ 1
4G .
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Coupling of a particle to 3d gravity

If we separate timeR and space S then A may be split into A = Atdt +
AS. The action of gravity with a point particle is given by

S =

∫
dt L =

k
4π

∫
dt
∫
S

〈
ȦS ∧ AS

〉
−
∫

dt
〈
C h−1ḣ

〉
+∫

dt
∫
S

〈
At

(
k

2π
FS − h C h−1δ2(~y) dy1 ∧ dy2

)〉
. (8)

The algebra element C = m J0 + s S0 encodes the particle’s mass m
and spin s and the group element h describes the particle’s motion.
The spatial curvature FS = dAS + [AS,AS] satisfies the constraint

k
2π

FS = h C h−1δ2(~y) dy1 ∧ dy2 , (9)

i.e. vanishes everywhere except a singularity at the particle’s worldline.
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Alekseev-Malkin construction

Space S may be decomposed into the disc D surrounding the particle,
with coordinates r ∈ [0,1], φ ∈ [0,2π], and the asymptotic empty
region E (for r ≥ 1), with the common boundary Γ at r = 1. Solving
the curvature constraint we find that on E the connection has the form

A(E)
S = γdγ−1 , (10)

while on D it is given by

A(D)
S = γ̄

1
k
Cdφ γ̄−1 + γ̄d γ̄−1 , γ̄(r = 0) = h , (11)

where γ, γ̄ are some gauge group elements. The continuity of AS

across Γ, i.e. A(D)
S |Γ = A(E)

S |Γ leads to the sewing condition

γ−1|Γ = N e
1
k Cφγ̄−1|Γ , (12)

where N = N(t) is an arbitrary gauge group element.
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Poincaré gauge group

In the limit Λ → 0 the group SO(3,1) becomes the Poincaré group
ISO(2,1) ' so(2,1)∗ o SO(2,1), so(2,1)∗ ' R3, with the algebra

[Jµ, Jν ] = εµνσJσ , [Jµ,Pν ] = εµνσPσ , [Pµ,Pν ] = 0 . (13)

Group elements γ ∈ ISO(2,1) are factorized into

γ = j p = (ι3 + ιµJµ)(1 + ξνPν) , (14)

with j ∈ SO(2,1), ξ ≡ ξaPa ∈ so(2,1)∗, and the group multiplication

γ(1)γ(2) = j(1)j(2)

(
1 + Ad(j−1

(2)) ξ(1) + ξ(2)

)
. (15)

The scalar product again has the form

〈JµPν〉 = ηµν , 〈JµJν〉 = 〈PµPν〉 = 0 . (16)
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Effective particle Lagrangian

We can now put the Lagrangian in the boundary form

L =
k

2π

∫
Γ

〈
j−1 j̇dξ − j̄−1 ˙̄jd ξ̄ +

CJ

k
dφ
[̄
j−1 ˙̄j, ξ̄

]
+
CP

k
dφ j̄−1 ˙̄j

〉
, (17)

where CJ ≡ m J0, CP ≡ s P0 = s S0. The sewing condition splits into

j−1 = ne
1
k CJφ j̄−1 , −Ad(n−1) ξ = ν − Ad(e

1
k CJφ) ξ̄ + 1

k CPφ , (18)

where N = (1 + ν) n, n ∈ SO(2,1), ν ∈ so(2,1)∗. Substituting these
conditions and denoting κ ≡ k

2π we eventually obtain the Lagrangian

L = κ
(

Π̇−1Π
)
µ

xµ + s
(
n−1ṅ

)
0 , (19)

with the particle’s position x ≡ n ξ̄ n−1 ∈ so(2,1)∗ and momentum
Π ≡ ne

m
κ J0n−1 ∈ SO(2,1).
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Properties of the gravitating particle

The parallel transport around the particle is described by the holonomy
of the connection AS along the boundary Γ, which is given by

holΓ(AS) = γ(φ = 0) γ−1(φ = 2π) =

Π
(
1 +

(
Ad(Π−1)− 1

)
x + Ad(Π−1) j̄ 1

κCP j̄
−1) . (20)

In particular, j(φ = 0) j−1(φ = 2π) = Π. The momentum manifold
SO(2,1) is 3d anti-de Sitter space. Using the parametrization Π = p3 +
1
κ pµJµ, where p3 =

√
1− 1

4κ2 pµpµ, we find the mass shell condition

pµpµ = 4κ2 sin2 m
2κ

. (21)
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Properties of the gravitating particle – cont.

Let us restrict to the spinless case. With x = xµPµ and the Lagrange
multiplier λ we may rewrite the effective Lagrangian as

L = −
(

p3ṗµ − ṗ3pµ −
1

2κ
εµνσṗνpσ

)
xµ−

λ
(

pµpµ − 4κ2 sin2 m
2κ

)
. (22)

It still leads to the equations of motion of a free relativistic particle

ẋµ = 2λpµ , ṗµ = 0 (23)

and in the limit κ→∞ we recover the free particle Lagrangian

L = −ṗµxµ − λ
(
pµpµ −m2) . (24)

T. Trześniewski The κ-Carroll particle 10 / 20



Particle in 3d gravity
New particle limit

Chern-Simons formalism
Particle in flat spacetime

The case of multiple particles
The Chern-Simons Lagrangian for a system of n particles has the form

L(n) =
k

4π

∫
S

〈
ȦS ∧ AS

〉
−

n∑
i=1

〈
Cih−1

i ḣi

〉
+

∫
S

〈
At

(
k

2π
FS −

n∑
i=1

hiCih−1
i δ2(~y − ~yi ) dy1 ∧ dy2

)〉
. (25)

We may divide S into n particle discs Di and the empty polygon E ,
whose edges Γi coincide with the boundaries of Di ’s. On each Di the
connection is given by

A(Di )
S = γ̄i

1
k
Cidφi γ̄

−1
i + γ̄id γ̄−1

i , γ̄i (ri = 0) = hi . (26)

Then for the i ’th particle we can derive

Li = κ
(

Π̇−1
i Πi

)
µ

xµi + si

(
n−1

i ṅi

)
0
. (27)
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The case of multiple particles – cont.

Imposing the continuity at the polygon’s vertices, γ(φi+1 = 0) = γ(φi =
2π) and fixing γ(φ1 = 0) = 1 we obtain the sequence of conditions

n1̄j
−1
1 = 1 , n2̄j

−1
2 = Π̄1 , n3̄j

−1
3 = Π̄1Π̄2 , . . . , (28)

where Π̄i = j̄ie
1
κ mi J0 j̄−1

i . Using them we find the n-particle Lagrangian

L(n) =
n∑

i=1

(
κ
(

˙̄Π−1
i Π̄i

)
µ

x̄µi + si

(̄
j−1
i

˙̄ji

)
0

)
+

κ
(

Π̄−1
2

˙̄Π−1
1 Π̄1Π̄2 − ˙̄Π−1

1 Π̄1

)
µ

x̄µ2 + s2

(̄
j−1
2 Π̄−1

1
˙̄Π1̄j2

)
0

+ . . . , (29)

where x̄i = j̄i ξ̄i j̄
−1
i .
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Alternative contraction of SO(3,1)
Let us rescale the so(3,1) generators to J̃µ ≡

√
Λ Jµ, P̃µ ≡ 1/

√
Λ Pµ

and define S̃µ ≡ P̃µ + εµ0ν J̃ν . In the limit Λ→ 0 we obtain the algebra

[J̃µ, J̃ν ] = 0 , [J̃µ, S̃ν ] = ην0J̃µ − ηµν J̃0 ,

[S̃µ, S̃ν ] = ηµ0S̃ν − ην0S̃µ . (30)

It generates the group AN(2) n an(2)∗, whose elements are

γ = i s = (1 + ιµJ̃µ)(ξ3 + ξνS̃ν) , (31)

with s ∈ AN(2), ι ≡ ιµJ̃µ ∈ an(2)∗ ' R3, and the group multiplication

γ(1)γ(2) =
(
1 + ι(1) + Ad(s(1)) ι(2)

)
s(1)s(2) . (32)

The corresponding scalar product is〈
J̃µS̃ν

〉
= ηµν ,

〈
J̃µJ̃ν

〉
=
〈

S̃µS̃ν
〉

= 0 . (33)
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New effective particle Lagrangian

We also have to exchange the labels of mass and spin so that CJ̃ = s J̃0

and CS̃ = m S̃0. Then we put the Lagrangian in the boundary form

L =
k

2π

∫
Γ

〈
İI−1

(
d s̄ s̄−1 − s̄

1
k
Cdφ s̄−1

)
+

1
k
Cdφ s̄−1 ˙̄s

〉
, (34)

where we denote I ≡ j̄−1j. The sewing condition can be split into

s−1 = ve
1
k CS̃φs̄−1 , I = e−

1
k CJ̃φs (1− n) s−1 , (35)

where N = (1 + n) v, v ∈ AN(2), n ∈ an(2)∗. Substituting it we obtain
the final Lagrangian

L = κ
(

Π̇ Π−1
)
µ

xµ + s
(
s̄−1 ˙̄s

)
0 , (36)

with the particle’s momentum Π ≡ s̄e
m
κ S̃0 s̄−1 ∈ AN(2) and position

x ≡ s̄ v−1n v s̄−1 ∈ an(2)∗.

T. Trześniewski The κ-Carroll particle 14 / 20



Particle in 3d gravity
New particle limit

Properties of the particle

The holonomy of the connection AS along the boundary Γ is given by

holΓ(AS) = γ(φ = 0) γ−1(φ = 2π) =(
1 + (1− Ad(Π)) x + 1

κCJ̃

)
Π . (37)

In particular, s(φ = 0) s−1(φ = 2π) = Π. The momentum manifold
AN(2) is 3d de Sitter space. Furthermore, using the parametrization
Π = epa/κ S̃aep0/κ S̃0 , v = eυ

a/κ S̃aeυ
0/κ S̃0 , a = 1,2 we find that

p0 = m , pa =
(

1− e
m
κ

)
υa , (38)

i.e. the particle’s energy is fixed to be the rest energy.
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Properties of the particle – cont.

The spin term does not contribute to the equations of motion and we
may restrict to s = 0. With x = xµP̃µ and the Lagrange multiplier λ the
particle Lagrangian can be rewritten in the form

L = −
(
x0ṗ0 + xaṗa − κ−1xapaṗ0

)
− λ

(
p2

0 −m2) , (39)

which describes a κ-deformed Carroll particle. It gives the equations
of motion of an ordinary Carroll particle

ẋ0 = 2λm , ẋa = 0 , ṗµ = 0 (40)

and in the limit κ→∞ we recover the Carroll particle Lagrangian

L = −x0ṗ0 − xaṗa − λ
(
p2

0 −m2) . (41)
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Symmetries of the deformed Carroll particle

The particle is invariant under infinitesimal κ-deformed Carroll trans-
formations, which include ordinary rotations

δxa = ρ εabxb , δpa = ρ ε b
a pb , δx0 = δp0 = 0 , (42)

deformed Carrollian boosts

δx0 =
(
1 + κ−1p0

)
λaxa , δpa = −λap0 , δxa = δp0 = 0 , (43)

deformed translations

δx0 = α0 , δxa = ep0/καa , δpµ = 0 (44)

and spatial conformal transformations

δxa = η xa , δpa = −η pa , δx0 = δp0 = 0 , (45)

where ρ, λa, αµ, η denote transformation parameters.
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Multiple particles

At the boundary Γi of each disc Di , i = 1, . . . ,n we find

L = κ
(

Π̇i Π−1
i

)
µ

xµi + si

(
s̄−1

i
˙̄si

)
0
. (46)

The continuity γ(φi+1 = 0) = γ(φi = 2π) and fixing γ(φ1 = 0) = 1
leads to the sequence of conditions

v1s̄
−1
1 = 1 , v2s̄

−1
2 = Π̄1 , v3s̄

−1
3 = Π̄2Π̄1 , . . . , (47)

where Π̄i = vie
1
κ mi S̃0v−1

i . Then we obtain the n-particle Lagrangian

L(n) =
n∑

i=1

(
κ
(

˙̄Πi Π̄
−1
i

)
µ

x̄µi + si

(
v−1

i v̇i

)
0

)
+

κ
(

Π̄2
˙̄Π1Π̄−1

1 Π̄−1
2 −

˙̄Π1Π̄−1
1

)
µ

x̄µ2 + s2

(
v−1

2 Π̄1
˙̄Π−1

1 v2

)
0

+ . . . , (48)

where x̄i = ni .
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Summary

We rederived the action of a gravitating particle in flat spacetime
We obtained the new action of a κ-deformed Carroll particle
Its momentum space is equivalent to the 3d κ-Minkowski momen-
tum space, associated with the κ-Poincaré Hopf algebra
The relevance of this particle model remains to be understood
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