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Plan of the talk

[) Introduction: Main questions and motivation

Il) Review of Chalker and Mehlig
[ll) Eigenvector correlations as determinantal point processes
[V) Large-N limits and link to density correlations

V) Summary and open questions
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Setup: Eigenvectors in the Ginibre ensemble

» complex Ginibre ensemble [Ginibre,

1965]

Jj € Nc(0,1): (Jj Jjy) = dikdy, all other zero

N x N independent complex Gaussian matrix elements

» distribution of all matrix elements

P(J) ~ exp [-TrJJT]

> right eigenvector R,:|J R, = A.R.

left eigenvector Lo: | LhJ = AL}

with complex eigenvalues A\, € C,
(assume non-degenerate)

a=1,2,....N

> (non-)orthogonality: (La, Rs) := L% - Rg = 6u.5

BUT | (Lo, L) # dap # (Ra, Rs)

» Correlations of )\, well understood - eigenvectors?
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» strongly coupled/ many-body Hamiltonian ‘H

— 1 spectral aspects described by random matrix H of
same symmetry [BGS vs. BT conjecture], €.9Q.
Hjj = Hji, P(H) ~ exp[-Tr H?] GUE

— in GUE left=right eigenvectors, uncorrelated & trivial

» complex non-Hermitian Hamiltonian/Dirac H # H':

- stability of complex systems [Mmay 1972]
- scattering in open quantum systems [Fyodorov, Sommers '03]
- quantum field theories with chemical potential [A 07]

> role of eigenvectors:

- sensitive to perturbations — [talk by W. Tarnowski]
- time dependent Brownian motion in Ginibre: [Burda et al. "14]
— coupled evolution of A\, Ly, R (¢ GUE or normal J)
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Approach of Chalker & Mehlig

> consider expectation values (O) := [[dJ]O(J)P(J)
of the overlapp matrix ‘ Oap = (Lo, Lg)(Ra, Rs) ‘

» invariant under symmetry of scalar product (L., Rg) = dap
under Ry — ¢R,, Lo — ¢ 'Ly, >0

» define conditional expectation values:

diagonal overlapp
D11(2) i= (N1 Oaad(z = Aa)) = N(O118(z — \1))

off-diagonal overlapp
Dia(21,22) = (30151 Oap (2 = Aa)d(Z = Ag))
= N(N = 1)(012 6(z = \)d(z = X2))

> can be expressed in terms of integrals over A\, only [Chalker,
Mehlig '98, '99]
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Methods and alternative quantities

» Many results known in the global regime from Dysonian
dynamics, diagrammatic expansion & free probability
theory [Krakéw group: Burda, Nowak et al. ]

» recent progress for further objects:

P(t,2) = (XN (O — 1 — 1)6(2 — M) | IFyodorov 17]

- tools partial Schur decomposition and expectation values
of characteristic polynomials

<|O12|2> and | (O11022) | [Bourgade, Dubach '18]

- probabilistic tools

|(La, Lg)| | correlations of angles [Beynach-Georges, Zeitouni 18]

» real and quaternionic Ginibre eigenvector correlations
known, cf. [Dubach '18; Forster '18] & products [Burda, Spisak, Vivo '16]
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Joint densities

» Schur decomposition|J = U(A + T)UT
where A = diag(\+, ..., An) complex eigenvalues
T complex upper triangular, U € U(N)

> trJJT = Tr (AAT + TTT)

P(J) = P\ T, U) ~ exp | = 01 Mol = Xk | TualP| 1NN

with Vandermonde determinant

T A A
ANN =TI N = M) =| 1 A2

> eigenvectors depend on T = average over T nontrivial
(O)r == [[dTIO(A, T)P(T)
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making T-dependence explicit: J —

0O ... 0 XM
= Ry =(1,0,...,0), R.=(c1,0,...,0)
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Performing the T-average
A T2 ... Tin

making T-dependence explicit: J —

= Ry =(1,0,...,0), R.=(c1,0,...,0)
L1 :(1,b2,...,bN), L2:(0,1,d3,...,dN)

with L1 1 RQ = C = —b2 and L1,L2 and R1, Rg NOT L
> express b;, d; recursively in terms of Ao, Ty

» averages over A and T factorise [Chalker, Mehlig '99]:

N
(O11)1 = [Tk=2 (1 + m)
(Or2)7 = 15 \2 ITx- 3( %)

» holds whenever T-average remains Gauf3, e.g. in

- induced or elliptic Ginibre, and quasi-harmonic potentials
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D11(Z1) = N<0115(Z1—)\1)>

N e—|21\2
= ZN/d2>\2"‘d2)\N|AN(Z1a)\27-‘-)|2

N 2 1
=M= (1
<1le ( *m—w)

N e—|21\2
= RS [ danian e

N
<[] e NP (]z1 — N2+ 1) + weight
=2

» same structure as complex 2eigenvalue correlations, with
new weight wy1(\) = e (1 4 |zp — \/[?)

» define D1 with more constraints
D11(Z1,22) = (N— 1) above x 5(22 — )\2) etc.
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N
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Off-diagonal from diagonal overlap

—N(N — 1)e" 121~z
ZN

N
x [T ™z =z — n) (20— Az - A) +1)
=3

Dio(z1,22) = /dz)\a - dPAN| AN 3N, - )P

e compare with

N(N — 1)e 1= 2~z

Di1(z1,22) = Zy /dQ)\s - dPANIAN_s(Ns, - )P
N 2
x (lzn—zP+1)][[e" |z - )\/|2(|Z1 - M+ 1>
=3

> Lemma1(arTz 19 Define Mf(zy, 25, 20, 23) = H(21, 25, Z2, 2F)

—_e~ 1A —22|2 S

= | Di2(21, 22) = 3252,z "ND11(21, 22)
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» Reminder complex eigenvalue k-point corrlation functions:

N

N!
P, Ak) = (I\l—k)!ZN/dZ)\kH --~d2)\N\AN(/\)‘2HW(/\j)
j:

= det [K(A,-,A/’-‘)] Det Point Process
1<ij<k

» determined by kernel of orthogonal polynomials

K(ur,v) = (w(u)w(v))z SN T Pi(u)* Qu(v)

< P, Qc >:= [ dPAW(N)Pi(A)* Qi(N) = hiS,

Zn = N! Hj'io1 h; normalisation = partition function

> e.g. Ginibre: w(u) = e U*, Pj(u) = Q)(u) = U/, by ==l



Orthogonal polynomial approach to overlaps

» Dy1(z1) partition function wrt weight wy(z1, )
» Dy1(z1, 22) density, k-th conditioned overlapp:



Orthogonal polynomial approach to overlaps

» Dy1(z1) partition function wrt weight wy(z1, )
» Dy1(z1, 22) density, k-th conditioned overlapp:

N
NI
Dii(M, . Xk) = (,\/_k),ZN/czszk+1 PN NN P T wir ()
! =

Nig—MPF N=2

=~z /11 < P,Q > 2§di§t§k [Kﬂ()\i,)\j )]



Orthogonal polynomial approach to overlaps

» Dy1(z1) partition function wrt weight wy(z1, )
» Dy1(z1, 22) density, k-th conditioned overlapp:

N
NI
Dii(M, . Xk) = (,\/_k),ZN/czszk+1 PN NN P T wir ()
! =

Nig—MPF N=2

=~z /11 < P,Q > 2Sdl_3_t§k [Kﬂ()\i,)\j )]

» goal: determine kernel, orthogonal polynomials and norms
wrt Welght W11(>\/) = e—|*/|2 (1 + |Z1 — )\/’2)



Orthogonal polynomial approach to overlaps

» Dy1(z1) partition function wrt weight wy(z1, )
» Dy1(z1, 22) density, k-th conditioned overlapp:

N
NI
Dii(M, . Xk) = (N_k),ZN/aFAH1 PN NN P T wir ()
! =

Nig—MPF N=2

=~z /11 < P,Q > 2Sdl_3_t§k [Kﬂ()\i,)\j )]

» goal: determine kernel, orthogonal polynomials and norms
wrt Welght W11(>\/) = e_l/\’l2 (1 + |Z1 — )\/’2)

» simplest case z; = A\ =0:

win(A) = e PP+ ]A))

P(N) = Q(\) =)\, hy=xl(l+2)




Orthogonal polynomial approach to overlaps

» Dy1(z1) partition function wrt weight wy(z1, )
» Dy1(z1, 22) density, k-th conditioned overlapp:

N
NI
Dii(M, . Xk) = (N_k),ZN/aFAH1 PN NN P T wir ()
! =

=~z /1:[o< /7Q/>2Sdl_3_t§k[ 1(\, j)]

» goal: determine kernel, orthogonal polynomials and norms
wrt Welght W11(>\/) = e_l/\’l2 (1 + |Z1 — )\/’2)

» simplest case z; = A\ =0:

win(A) = e 1+ AP

P(N) = Q(\) =)\, hy=xl(l+2)

» almost like Ginibre, heuristic argument (translational
invariance) leads to large-N result
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» Theorem 1 [A Tribe, Tsareas, Zaboronski '19]

Di1( M\, ..., ) = %ef‘)‘”z fn—1(J A\ ’2) detzg,”jgk |:K11(/\;-k, )‘j)]

where ep(x) = 3P, % exponential polynomials, x = [A¢[2,

fn—1(x) = Nen_1(x) — xen_2(x),

(NH1) Fiv1 (6, 45 5 ) =X (X, e 55
2 PVEDY ATTA
Kig(u*,v) = 1(1 + |u— M\ [P el -~ —
(U, v)=z(1+u—XM[)e (U =72 (v=M1)2 -1 (IM1%)

Fo(x,y,2) = en(xy)en(xz) — en(xyz)en(x) (1 — x(1 - y)(1 - 2))

1 nt1g (x) — x" e,
+- (1= y)(1 _ ) e (1’()_ y; en(xyZ)

> exact result for finite N Yk

» example D;1()\1) has no determinant

» Di>(M1,..., k) can be defined similarly and follows from a
generalisation of Lemma 1 to all k > 2
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|dea of the proof

» Jalternative way to express the kernel for arbitrary weight:

moment matrix M; :=< v,/ >= [ d?A\(\*)'V

= | K(u*,v) = (w(u)w(v))z S5y (M-1);vi

» here M is tridiagonal: [Walters, Starr '14]
My = 1oy (1 + MA) + (F+ 1)) = 1M (T4 1) = 61 A]]

» use decomposition M = LDU, where L & U easy to invert
o fi(A
= Pulu) = oL at! = S N B
and Q(v) = XK V(U Kk = Py(v)

> a very tedius calculation leads to a form that is amenable
to the large-N limit
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Large-N limits: Global vs. local regime

» Reminder eigenvalues density correlations:

- global density: circular law
- local bulk kernel K(u*, v) = L exp[—|ul? — |v[2 + u*V]
- local edge density K(u*, u) ~ erfc
» Corollary 1 Local bulk limit (origin) for conditional overlap

My _oeo 1ND11 ()\1 Yo ,)\k) = %detggingk[KHlk(/\f, )\/‘)]

. * |- 2 Z_
KB, v) = 1(1 = |u—AqB)elunl g (€21

1
s z

Z=(U=X7)(v=A1)

» agrees with kernel for complex eigenvalues of truncated
unitary ensemble



Large-N limits: Global vs. local regime

» Reminder eigenvalues density correlations:

- global density: circular law
- local bulk kernel K(u*, v) = L exp[—|ul? — |v[2 + u*V]
- local edge density K(u*, u) ~ erfc
» Corollary 1 Local bulk limit (origin) for conditional overlap
My _oeo 1ND11 ()\1 Yo ,)\k) = %detggingk[KHlk(/\f, )\/‘)]

* —lu—\412 z__
KB, v) = 1(1 = |u—AqB)elunl g (€21

1
s z

z=(u*=A})(v—X\1)
» agrees with kernel for complex eigenvalues of truncated
unitary ensemble

» example for off-diagonal overlapp: [Chalker, Mehlig '99] heuristic
_ _ 2
DEN(A, 02) = sz (1= (14 Ay = dgf2)ePiel?)



Large-N continued

» Corollary 2 Local edge scaling limit for conditional overlap

e 2MHNP_vam () anerfe D “1 )

”mN—mﬁDﬁ (eie(m+)\1) = S

» for k > 2: x det of edge kernel
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Large-N continued

» Corollary 2 Local edge scaling limit for conditional overlap

limn— oo ﬁDﬂ (eie(er )\1) =

1

e 2!

2
MEADT_ 2\, anerfeti i)

(A +x1 )

x/ﬁ

» for k > 2: x det of edge kernel

> conjecture: these local bulk & edge kernels are universal

» Corollary 3 Algebraic decay of overlaps

When all eigenvalues in the bulk have a large large

separation: \; — \; >Vi#j=1,...

, k we have

D (O, M) = e TT1 (1

N \A1—1A/\4> +0(e™)




Large-N continued

» Corollary 2 Local edge scaling limit for conditional overlap

e 2MHNP_vam () anerfe D “1 )

limn— oo ﬁDﬂ (eie(er )\1) =

V2rs3

» for k > 2: x det of edge kernel
> conjecture: these local bulk & edge kernels are universal

» Corollary 3 Algebraic decay of overlaps

When all eigenvalues in the bulk have a large large
separation: \; — \; >Vi#j=1,..., k we have

k _2
DO, M) = 1T (11— 5w ) +O(eH)

» the proof uses a relation between the overlap and
eigenvalues correlation functions




Limiting relation in the bulk

DR, k) =

k
—1 = A = A 2 9
[ T— M= AP == \)—

1=2

PP )

» this hints at the possibility that the known universality of
complex eigenvalue correlation functions could be
transferred to the overlaps



Summary ...

» diagonal and off-diagonal overlapp are part of a DPP
» corresponding kernels computed explicitly for finite-N

» local large-N limits in bulk (origin) and at edge follow



... and open questions

» further explicit examples for which the DPP remains intact

» the computation of the kernel at finite-N is difficult to
generalise

> are the local eigenvector correlations universal?

» global correlations from finite-N results?
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