

Determinantal structure of eigenvector correlations in the complex Ginibre ensemble

Gernot Akemann

(Bielefeld University)

RMT: Applications in the Information Era Kraków 02.05.2019

with R. Tribe, A. Tsareas & O. Zaboronski [arXiv: 1809:05905]

Plan of the talk

- I) Introduction: Main questions and motivation
- II) Review of Chalker and Mehlig
- III) Eigenvector correlations as determinantal point processes
- IV) Large-N limits and link to density correlations
- V) Summary and open questions

- ► complex Ginibre ensemble [Ginibre, 1965] $J_{ij} \in \mathcal{N}_{\mathbb{C}}(0,1)$: $\langle J_{ij} \ J_{kl}^* \rangle = \delta_{ik}\delta_{jl}$, all other zero $N \times N$ independent complex Gaussian matrix elements
- ▶ distribution of all matrix elements $\mathcal{P}(J) \sim \exp\left[-\mathrm{Tr}\,JJ^{\dagger}\right]$

- complex Ginibre ensemble [Ginibre, 1965] $J_{ij} \in \mathcal{N}_{\mathbb{C}}(0,1)$: $\langle J_{ij} \ J_{kl}^* \rangle = \delta_{ik}\delta_{jl}$, all other zero $N \times N$ independent complex Gaussian matrix elements
- ▶ distribution of all matrix elements $\mathcal{P}(J) \sim \exp\left[-\operatorname{Tr} J J^{\dagger}\right]$
- right eigenvector R_{α} : $J R_{\alpha} = \lambda_{\alpha} R_{\alpha}$ left eigenvector L_{α} : $L_{\alpha}^{\dagger} J = \lambda_{\alpha} L_{\alpha}^{\dagger}$ with complex eigenvalues $\lambda_{\alpha} \in \mathbb{C}, \ \alpha = 1, 2, \dots, N$ (assume non-degenerate)

- complex Ginibre ensemble [Ginibre, 1965] $J_{ij} \in \mathcal{N}_{\mathbb{C}}(0,1)$: $\langle J_{ij} \ J_{kl}^* \rangle = \delta_{ik}\delta_{jl}$, all other zero $N \times N$ independent complex Gaussian matrix elements
- ▶ distribution of all matrix elements $\mathcal{P}(J) \sim \exp\left[-\operatorname{Tr} J J^{\dagger}\right]$
- right eigenvector R_{α} : $JR_{\alpha} = \lambda_{\alpha}R_{\alpha}$ left eigenvector L_{α} : $L_{\alpha}^{\dagger}J = \lambda_{\alpha}L_{\alpha}^{\dagger}$ with complex eigenvalues $\lambda_{\alpha} \in \mathbb{C}, \ \alpha = 1, 2, \dots, N$ (assume non-degenerate)
- $\begin{array}{c} \bullet \quad \underline{\text{(non-)orthogonality:}} \; (L_{\alpha},R_{\beta}) := L_{\alpha}^{\dagger} \cdot R_{\beta} = \delta_{\alpha,\beta} \\ \\ \mathsf{BUT} \left[(L_{\alpha},L_{\beta}) \neq \delta_{\alpha\beta} \neq (R_{\alpha},R_{\beta}) \right] \end{array}$

- complex Ginibre ensemble [Ginibre, 1965] $J_{ij} \in \mathcal{N}_{\mathbb{C}}(0,1)$: $\langle J_{ij} \ J_{kl}^* \rangle = \delta_{ik}\delta_{jl}$, all other zero $N \times N$ independent complex Gaussian matrix elements
- ▶ distribution of all matrix elements $\mathcal{P}(J) \sim \exp\left[-\mathrm{Tr}\,JJ^{\dagger}\right]$
- right eigenvector R_{α} : $JR_{\alpha} = \lambda_{\alpha}R_{\alpha}$ left eigenvector L_{α} : $L_{\alpha}^{\dagger}J = \lambda_{\alpha}L_{\alpha}^{\dagger}$ with complex eigenvalues $\lambda_{\alpha} \in \mathbb{C}, \quad \alpha = 1, 2, \dots, N$ (assume non-degenerate)
- $\begin{array}{c} \underline{ \text{(non-)orthogonality:}} \left(L_{\alpha}, R_{\beta} \right) := L_{\alpha}^{\dagger} \cdot R_{\beta} = \delta_{\alpha,\beta} \\ \\ \underline{ \text{BUT} \left[\left(L_{\alpha}, L_{\beta} \right) \neq \delta_{\alpha\beta} \neq \left(R_{\alpha}, R_{\beta} \right) \right] } \end{array}$
- ▶ Correlations of λ_{α} well understood eigenvectors?

strongly coupled/ many-body Hamiltonian H

ightarrow \exists spectral aspects described by random matrix H of same symmetry [BGS vs. BT conjecture], e.g.

 $H_{ij}=H_{ji}^*,\,P(H)\sim \exp[-{
m Tr}\,H^2]$ GUE

- strongly coupled/ many-body Hamiltonian H
 - $\rightarrow \exists$ spectral aspects described by random matrix H of same symmetry [BGS vs. BT conjecture], e.g.

$$H_{ij} = H_{jj}^*, P(H) \sim \exp[-\operatorname{Tr} H^2] \text{ GUE}$$

→ in GUE left=right eigenvectors, uncorrelated & trivial

- strongly coupled/ many-body Hamiltonian H
 - $\rightarrow \exists$ spectral aspects described by random matrix H of same symmetry [BGS vs. BT conjecture], e.g.

$$H_{ij}=H_{ji}^*,\,P(H)\sim \exp[-{
m Tr}\,H^2]$$
 GUE

- → in GUE left=right eigenvectors, uncorrelated & trivial
- ▶ complex non-Hermitian Hamiltonian/Dirac $\mathcal{H} \neq \mathcal{H}^{\dagger}$:
 - stability of complex systems [May 1972]
 - scattering in open quantum systems [Fyodorov, Sommers '03]
 - quantum field theories with chemical potential [A '07]

- ightharpoonup strongly coupled/ many-body Hamiltonian ${\cal H}$
 - ightarrow \exists spectral aspects described by random matrix H of same symmetry [BGS vs. BT conjecture], e.g.

$$H_{ij}=H_{ji}^*,\,P(H)\sim \exp[-{
m Tr}\,H^2]$$
 GUE

- ightarrow in GUE left=right eigenvectors, uncorrelated & trivial
- ▶ complex non-Hermitian Hamiltonian/Dirac $\mathcal{H} \neq \mathcal{H}^{\dagger}$:
 - stability of complex systems [May 1972]
 - scattering in open quantum systems [Fyodorov, Sommers '03]
 - quantum field theories with chemical potential [A '07]
- role of eigenvectors:
 - sensitive to perturbations → [talk by W. Tarnowski]
 - time dependent Brownian motion in Ginibre: [Burda et al. '14]
 - \rightarrow coupled evolution of λ_{α} , L_{α} , R_{α} (\neq GUE or normal J)

▶ consider expectation values $\langle \mathcal{O} \rangle := \int [dJ] \mathcal{O}(J) \mathcal{P}(J)$ of the **overlapp matrix** $\boxed{\mathcal{O}_{\alpha\beta} = (L_{\alpha}, L_{\beta})(R_{\alpha}, R_{\beta})}$

- consider expectation values $\langle \mathcal{O} \rangle := \int [dJ] \mathcal{O}(J) \mathcal{P}(J)$ of the **overlapp matrix** $\left[\mathcal{O}_{\alpha\beta} = (L_{\alpha}, L_{\beta})(R_{\alpha}, R_{\beta}) \right]$
- ▶ invariant under symmetry of scalar product $(L_{\alpha}, R_{\beta}) = \delta_{\alpha\beta}$ under $R_{\alpha} \to cR_{\alpha}$, $L_{\alpha} \to c^{-1}L_{\alpha}$, c > 0

- consider expectation values $\langle \mathcal{O} \rangle := \int [dJ] \mathcal{O}(J) \mathcal{P}(J)$ of the **overlapp matrix** $\mathcal{O}_{\alpha\beta} = (L_{\alpha}, L_{\beta})(R_{\alpha}, R_{\beta})$
- ▶ invariant under symmetry of scalar product $(L_{\alpha}, R_{\beta}) = \delta_{\alpha\beta}$ under $R_{\alpha} \to cR_{\alpha}$, $L_{\alpha} \to c^{-1}L_{\alpha}$, c > 0
- define conditional expectation values:

diagonal overlapp

$$D_{11}(z) := \langle \sum_{\alpha=1}^{N} \mathcal{O}_{\alpha\alpha} \delta(z - \lambda_{\alpha}) \rangle = N \langle \mathcal{O}_{11} \delta(z - \lambda_{1}) \rangle$$

- consider expectation values $\langle \mathcal{O} \rangle := \int [dJ] \mathcal{O}(J) \mathcal{P}(J)$ of the **overlapp matrix** $\mathcal{O}_{\alpha\beta} = (L_{\alpha}, L_{\beta})(R_{\alpha}, R_{\beta})$
- ▶ invariant under symmetry of scalar product $(L_{\alpha}, R_{\beta}) = \delta_{\alpha\beta}$ under $R_{\alpha} \to cR_{\alpha}$, $L_{\alpha} \to c^{-1}L_{\alpha}$, c > 0
- define conditional expectation values:

diagonal overlapp

$$D_{11}(z) := \langle \sum_{\alpha=1}^{N} \mathcal{O}_{\alpha\alpha} \delta(z - \lambda_{\alpha}) \rangle = N \langle \mathcal{O}_{11} \delta(z - \lambda_{1}) \rangle$$

off-diagonal overlapp

$$D_{12}(z_1, z_2) := \langle \sum_{\alpha \neq \beta = 1}^{N} \mathcal{O}_{\alpha\beta} \ \delta(z - \lambda_{\alpha}) \delta(z - \lambda_{\beta}) \rangle$$
$$= N(N - 1) \langle \mathcal{O}_{12} \ \delta(z - \lambda_1) \delta(z - \lambda_2) \rangle$$

- ▶ consider expectation values $\langle \mathcal{O} \rangle := \int [dJ] \mathcal{O}(J) \mathcal{P}(J)$ of the **overlapp matrix** $\left[\mathcal{O}_{\alpha\beta} = (L_{\alpha}, L_{\beta})(R_{\alpha}, R_{\beta}) \right]$
- ▶ invariant under symmetry of scalar product $(L_{\alpha}, R_{\beta}) = \delta_{\alpha\beta}$ under $R_{\alpha} \to cR_{\alpha}$, $L_{\alpha} \to c^{-1}L_{\alpha}$, c > 0
- define conditional expectation values:

diagonal overlapp

$$D_{11}(z) := \langle \sum_{\alpha=1}^{N} \mathcal{O}_{\alpha\alpha} \delta(z - \lambda_{\alpha}) \rangle = N \langle \mathcal{O}_{11} \delta(z - \lambda_{1}) \rangle$$

off-diagonal overlapp

$$D_{12}(z_1, z_2) := \langle \sum_{\alpha \neq \beta = 1}^{N} \mathcal{O}_{\alpha\beta} \ \delta(z - \lambda_{\alpha}) \delta(z - \lambda_{\beta}) \rangle$$
$$= N(N - 1) \langle \mathcal{O}_{12} \ \delta(z - \lambda_1) \delta(z - \lambda_2) \rangle$$

 \blacktriangleright can be expressed in terms of integrals over λ_α only [Chalker, Mehlig '98, '99]

Many results known in the global regime from Dysonian dynamics, diagrammatic expansion & free probability theory [Kraków group: Burda, Nowak et al.]

- Many results known in the global regime from Dysonian dynamics, diagrammatic expansion & free probability theory [Kraków group: Burda, Nowak et al.]
- recent progress for further objects:

$$P(t,z) = \langle \sum_{lpha=1}^N \delta(\mathcal{O}_{lphalpha} - 1 - t) \delta(z - \lambda_lpha)
angle$$
 [Fyodorov '17]

- tools partial Schur decomposition and expectation values of characteristic polynomials

- Many results known in the global regime from Dysonian dynamics, diagrammatic expansion & free probability theory [Kraków group: Burda, Nowak et al.]
- recent progress for further objects:

$$P(t,z) = \langle \sum_{lpha=1}^N \delta(\mathcal{O}_{lphalpha} - 1 - t) \delta(z - \lambda_lpha)
angle$$
 [Fyodorov '17]

- tools partial Schur decomposition and expectation values of characteristic polynomials

$$\overline{\langle |\mathcal{O}_{12}|^2
angle}$$
 and $\overline{\langle \mathcal{O}_{11}\mathcal{O}_{22}
angle}$ [Bourgade, Dubach '18]

probabilistic tools

- Many results known in the global regime from Dysonian dynamics, diagrammatic expansion & free probability theory [Kraków group: Burda, Nowak et al.]
- recent progress for further objects:

$$P(t,z) = \langle \sum_{lpha=1}^N \delta(\mathcal{O}_{lphalpha} - 1 - t) \delta(z - \lambda_lpha)
angle$$
 [Fyodorov '17]

- tools partial Schur decomposition and expectation values of characteristic polynomials

$$\langle |\mathcal{O}_{12}|^2
angle$$
 and $\overline{\langle \mathcal{O}_{11}\mathcal{O}_{22}
angle}$ [Bourgade, Dubach '18]

probabilistic tools

 $ig||(\mathcal{L}_lpha,\mathcal{L}_eta)|ig|$ correlations of angles [Beynach-Georges, Zeitouni '18]

- Many results known in the global regime from Dysonian dynamics, diagrammatic expansion & free probability theory [Kraków group: Burda, Nowak et al.]
- recent progress for further objects:

$$P(t,z) = \langle \sum_{lpha=1}^N \delta(\mathcal{O}_{lphalpha} - 1 - t) \delta(z - \lambda_lpha)
angle$$
 [Fyodorov '17]

 tools partial Schur decomposition and expectation values of characteristic polynomials

$$\left<|{\cal O}_{12}|^2
ight>$$
 and $\left<{\cal O}_{11}{\cal O}_{22}
ight>$ [Bourgade, Dubach '18]

- probabilistic tools

$$|(L_lpha,L_eta)|$$
 correlations of angles [Beynach-Georges, Zeitouni '18]

real and quaternionic Ginibre eigenvector correlations known, cf. [Dubach '18; Förster '18] & products [Burda, Spisak, Vivo '16]

Joint densities

- Schur decomposition $J = U(\Lambda + T)U^{\dagger}$ where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_N)$ complex eigenvalues T complex upper triangular, $U \in U(N)$
- $\qquad \operatorname{tr} JJ^{\dagger} = \operatorname{Tr} \left(\Lambda \Lambda^{\dagger} + TT^{\dagger} \right)$

Joint densities

- Schur decomposition $J = U(\Lambda + T)U^{\dagger}$ where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_N)$ complex eigenvalues T complex upper triangular, $U \in U(N)$
- $\qquad \qquad \operatorname{tr} JJ^{\dagger} = \operatorname{Tr} \left(\Lambda \Lambda^{\dagger} + TT^{\dagger} \right)$

$$P(J) \rightarrow P(\Lambda, T, U) \sim \exp\left[-\sum_{\alpha=1}^{N} |\lambda_{\alpha}|^2 - \sum_{k < l} |T_{kl}|^2\right] |\Delta_N(\Lambda)|^2$$

with Vandermonde determinant

$$\Delta_{N}(\Lambda) = \prod_{j>k}^{N} (\lambda_{j} - \lambda_{k}) = \begin{vmatrix} 1 & \lambda_{1} & \dots & \lambda_{1}^{N-1} \\ 1 & \lambda_{2} & & \dots \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$$

Joint densities

- Schur decomposition $J = U(\Lambda + T)U^{\dagger}$ where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_N)$ complex eigenvalues T complex upper triangular, $U \in U(N)$
- $\qquad \operatorname{tr} JJ^{\dagger} = \operatorname{Tr} \left(\Lambda \Lambda^{\dagger} + TT^{\dagger} \right)$

$$P(J) o P(\Lambda, T, U) \sim \exp\left[-\sum_{\alpha=1}^{N} |\lambda_{\alpha}|^2 - \sum_{k < l} |T_{kl}|^2\right] |\Delta_N(\Lambda)|^2$$

with Vandermonde determinant

$$\Delta_{N}(\Lambda) = \prod_{j>k}^{N} (\lambda_{j} - \lambda_{k}) = \begin{vmatrix} 1 & \lambda_{1} & \dots & \lambda_{1}^{N-1} \\ 1 & \lambda_{2} & & \dots \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$$

• eigenvectors depend on $T \Rightarrow$ average over T nontrivial $\langle \mathcal{O} \rangle_T := \int [dT] \mathcal{O}(\Lambda, T) P(T)$

$$\Rightarrow R_1 = (1,0,\ldots,0), \quad R_2 = (c,1,0,\ldots,0)$$

$$\Rightarrow R_1 = (1,0,\ldots,0), \quad R_2 = (c,1,0,\ldots,0) \\ L_1 = (1,b_2,\ldots,b_N), \quad L_2 = (0,1,d_3,\ldots,d_N)$$

$$\underline{\text{making } T\text{-dependence explicit: } J \to \left(\begin{array}{cccc} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & & \dots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{array}\right)$$

$$\Rightarrow R_1 = (1,0,\ldots,0), \quad R_2 = (c,1,0,\ldots,0) \\ L_1 = (1,b_2,\ldots,b_N), \quad L_2 = (0,1,d_3,\ldots,d_N)$$

with $L_1 \perp R_2 \Rightarrow c = -b_2$ and L_1, L_2 and R_1, R_2 NOT \perp

$$\underline{\text{making } T\text{-dependence explicit: } J \to \left(\begin{array}{cccc} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & & \dots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{array}\right)$$

$$\Rightarrow$$
 $R_1 = (1, 0, ..., 0), \quad R_2 = (c, 1, 0, ..., 0)$
 $L_1 = (1, b_2, ..., b_N), \quad L_2 = (0, 1, d_3, ..., d_N)$
with $L_1 \perp R_2 \Rightarrow c = -b_2$ and L_1, L_2 and R_1, R_2 NOT \perp

• express b_i , d_j recursively in terms of $\lambda \alpha$, T_{kl}

$$\underline{\text{making } T\text{-dependence explicit: } J \to \left(\begin{array}{cccc} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & & \dots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{array}\right)$$

- \Rightarrow $R_1 = (1, 0, ..., 0), \quad R_2 = (c, 1, 0, ..., 0)$ $L_1 = (1, b_2, ..., b_N), \quad L_2 = (0, 1, d_3, ..., d_N)$ with $L_1 \perp R_2 \Rightarrow c = -b_2$ and L_1, L_2 and R_1, R_2 NOT \perp
- express b_i , d_i recursively in terms of $\lambda \alpha$, T_{kl}
- averages over Λ and T factorise [Chalker, Mehlig '99]:

$$\frac{\langle \mathcal{O}_{11} \rangle_T = \prod_{k=2}^N \left(1 + \frac{1}{|\lambda_1 - \lambda_k|^2} \right)}{\langle \mathcal{O}_{12} \rangle_T = \frac{-1}{|\lambda_1 - \lambda_2|^2} \prod_{k=3}^N \left(1 + \frac{1}{(\lambda_1 - \lambda_k)(\lambda_2^* - \lambda_k^*)} \right)}$$

$$\Rightarrow$$
 $R_1 = (1, 0, ..., 0), \quad R_2 = (c, 1, 0, ..., 0)$
 $L_1 = (1, b_2, ..., b_N), \quad L_2 = (0, 1, d_3, ..., d_N)$
with $L_1 \perp R_2 \Rightarrow c = -b_2$ and L_1, L_2 and R_1, R_2 NOT \perp

- express b_i , d_i recursively in terms of $\lambda \alpha$, T_{kl}
- averages over Λ and T factorise [Chalker, Mehlig '99]:

- ▶ holds whenever *T*-average remains Gauß, e.g. in
 - induced or elliptic Ginibre, and quasi-harmonic potentials

$$\begin{split} D_{11}(z_1) &= N \langle \mathcal{O}_{11} \delta(z_1 - \lambda_1) \rangle \\ &= \frac{N e^{-|z_1|^2}}{Z_N} \int d^2 \lambda_2 \cdots d^2 \lambda_N |\Delta_N(z_1, \lambda_2, \ldots)|^2 \\ &\times \prod_{l=2}^N e^{-|\lambda_l|^2} \left(1 + \frac{1}{|z_1 - \lambda_l|^2} \right) \end{split}$$

$$\begin{split} D_{11}(z_{1}) &= N\langle \mathcal{O}_{11}\delta(z_{1}-\lambda_{1})\rangle \\ &= \frac{N e^{-|z_{1}|^{2}}}{Z_{N}} \int d^{2}\lambda_{2} \cdots d^{2}\lambda_{N} |\Delta_{N}(z_{1},\lambda_{2},\ldots)|^{2} \\ &\times \prod_{l=2}^{N} e^{-|\lambda_{l}|^{2}} \left(1 + \frac{1}{|z_{1}-\lambda_{l}|^{2}}\right) \\ &= \frac{N e^{-|z_{1}|^{2}}}{Z_{N}} \int d^{2}\lambda_{2} \cdots d^{2}\lambda_{N} |\Delta_{N-1}(\lambda_{2},\ldots)|^{2} \\ &\times \prod_{l=2}^{N} e^{-|\lambda_{l}|^{2}} \left(|z_{1}-\lambda_{l}|^{2} + 1\right) \end{split}$$

$$\begin{split} D_{11}(z_1) &= N \langle \mathcal{O}_{11} \delta(z_1 - \lambda_1) \rangle \\ &= \frac{N e^{-|z_1|^2}}{Z_N} \int d^2 \lambda_2 \cdots d^2 \lambda_N |\Delta_N(z_1, \lambda_2, \ldots)|^2 \\ &\times \prod_{l=2}^N e^{-|\lambda_l|^2} \left(1 + \frac{1}{|z_1 - \lambda_l|^2} \right) \\ &= \frac{N e^{-|z_1|^2}}{Z_N} \int d^2 \lambda_2 \cdots d^2 \lambda_N |\Delta_{N-1}(\lambda_2, \ldots)|^2 \\ &\times \prod_{l=2}^N e^{-|\lambda_l|^2} \left(|z_1 - \lambda_l|^2 + 1 \right) &\leftarrow \text{weight} \end{split}$$

same structure as complex eigenvalue correlations, with new weight $w_{11}(\lambda_I) = e^{-|\lambda_I|^2} \left(1 + |z_1 - \lambda_I|^2\right)$

$$\begin{split} D_{11}(z_1) &= N \langle \mathcal{O}_{11} \delta(z_1 - \lambda_1) \rangle \\ &= \frac{N e^{-|z_1|^2}}{Z_N} \int d^2 \lambda_2 \cdots d^2 \lambda_N |\Delta_N(z_1, \lambda_2, \ldots)|^2 \\ &\times \prod_{l=2}^N e^{-|\lambda_l|^2} \left(1 + \frac{1}{|z_1 - \lambda_l|^2} \right) \\ &= \frac{N e^{-|z_1|^2}}{Z_N} \int d^2 \lambda_2 \cdots d^2 \lambda_N |\Delta_{N-1}(\lambda_2, \ldots)|^2 \\ &\times \prod_{l=2}^N e^{-|\lambda_l|^2} \left(|z_1 - \lambda_l|^2 + 1 \right) &\leftarrow \text{weight} \end{split}$$

- ▶ same structure as complex eigenvalue correlations, with new weight $w_{11}(\lambda_I) = e^{-|\lambda_I|^2} (1 + |z_1 \lambda_I|^2)$
- define D_{11} with more constraints $D_{11}(z_1, z_2) = (N 1)$ above $\times \delta(z_2 \lambda_2)$ etc.

Off-diagonal from diagonal overlap

$$D_{12}(z_1, z_2) = \frac{-N(N-1)e^{-|z_1|^2 - |z_2|^2}}{Z_N} \int d^2 \lambda_3 \cdots d^2 \lambda_N |\Delta_{N-3}(\lambda_3, \ldots)|^2$$

$$\times \prod_{I}^N e^{-|\lambda_I|^2} (z_1^* - \lambda_I^*) (z_2 - \lambda_I) \Big((z_1 - \lambda_I) (z_2^* - \lambda_I^*) + 1 \Big)$$

Off-diagonal from diagonal overlap

$$D_{12}(z_1, z_2) = \frac{-N(N-1)e^{-|z_1|^2 - |z_2|^2}}{Z_N} \int d^2 \lambda_3 \cdots d^2 \lambda_N |\Delta_{N-3}(\lambda_3, \ldots)|^2$$

$$\times \prod_{l=3}^N e^{-|\lambda_l|^2} (z_1^* - \lambda_l^*) (z_2 - \lambda_l) \Big((z_1 - \lambda_l)(z_2^* - \lambda_l^*) + 1 \Big)$$

• compare with

$$\begin{array}{lcl} D_{11}(z_1,z_2) & = & \frac{N(N-1)e^{-|z_1|^2-|z_2|^2}}{Z_N} \int\!\! d^2\lambda_3\cdots d^2\lambda_N |\Delta_{N-3}(\lambda_3,\ldots)|^2 \\ \\ & \times & (|z_1-z_2|^2+1) \prod_{l=3}^N e^{-|\lambda_l|^2} |z_2-\lambda_l|^2 \Big(|z_1-\lambda_l|^2+1\Big) \end{array}$$

Off-diagonal from diagonal overlap

$$D_{12}(z_1, z_2) = \frac{-N(N-1)e^{-|z_1|^2 - |z_2|^2}}{Z_N} \int d^2\lambda_3 \cdots d^2\lambda_N |\Delta_{N-3}(\lambda_3, \ldots)|^2$$

$$\times \prod_{l=3}^N e^{-|\lambda_l|^2} (z_1^* - \lambda_l^*) (z_2 - \lambda_l) \Big((z_1 - \lambda_l)(z_2^* - \lambda_l^*) + 1 \Big)$$

compare with

$$D_{11}(z_1, z_2) = \frac{N(N-1)e^{-|z_1|^2 - |z_2|^2}}{Z_N} \int d^2 \lambda_3 \cdots d^2 \lambda_N |\Delta_{N-3}(\lambda_3, \ldots)|^2$$

$$\times (|z_1 - z_2|^2 + 1) \prod_{l=3}^N e^{-|\lambda_l|^2} |z_2 - \lambda_l|^2 (|z_1 - \lambda_l|^2 + 1)$$

► **Lemma1**[ATTZ '19] Define
$$\hat{\Pi}f(z_1, z_1^*, z_2, z_2^*) = f(z_1, z_2^*, z_2, z_1^*)$$

$$\Rightarrow D_{12}(z_1, z_2) = \frac{-e^{-|z_1 - z_2|^2}}{1 - |z_1 - z_2|^2} \hat{\Pi} D_{11}(z_1, z_2)$$

Reminder orthogonal polynomials on $\mathbb C$

► Reminder complex **eigenvalue** *k*-point corrlation functions:

$$\rho(\lambda_1, \dots, \lambda_k) := \frac{N!}{(N-k)! Z_N} \int d^2 \lambda_{k+1} \dots d^2 \lambda_N |\Delta_N(\Lambda)|^2 \prod_{j=1}^N w(\lambda_j)$$

$$= \det_{1 \le i, j \le k} \left[K(\lambda_i, \lambda_j^*) \right] \quad \text{Det Point Process}$$

Reminder orthogonal polynomials on ${\mathbb C}$

Reminder complex eigenvalue k-point corrlation functions:

$$\rho(\lambda_1, \dots, \lambda_k) := \frac{N!}{(N-k)! Z_N} \int d^2 \lambda_{k+1} \dots d^2 \lambda_N |\Delta_N(\Lambda)|^2 \prod_{j=1}^N w(\lambda_j)$$

$$= \det_{1 \le i, j \le k} \left[K(\lambda_i, \lambda_j^*) \right] \quad \text{Det Point Process}$$

determined by kernel of orthogonal polynomials

$$\begin{split} & K(u^*,v) = (w(u)w(v))^{\frac{1}{2}} \sum_{j=0}^{N-1} h_j^{-1} P_l(u)^* Q_l(v) \\ & < P_l, Q_k > := \int d^2 \lambda w(\lambda) P_l(\lambda)^* Q_k(\lambda) = h_j \delta_{jk}, \\ & Z_N = N! \prod_{j=0}^{N-1} h_j \text{ normalisation = partition function} \end{split}$$

Reminder orthogonal polynomials on ${\mathbb C}$

► Reminder complex **eigenvalue** *k*-point corrlation functions:

$$\begin{split} \rho(\lambda_1,\ldots,\lambda_k) &:= \frac{N!}{(N-k)!Z_N} \int d^2\lambda_{k+1}\ldots d^2\lambda_N |\Delta_N(\Lambda)|^2 \prod_{j=1}^N w(\lambda_j) \\ &= \det_{1\leq i,j\leq k} \left[K(\lambda_i,\lambda_j^*) \right] \quad \text{Det Point Process} \end{split}$$

determined by kernel of orthogonal polynomials

$$K(u^*, v) = (w(u)w(v))^{\frac{1}{2}} \sum_{j=0}^{N-1} h_j^{-1} P_l(u)^* Q_l(v)$$

$$< P_l, Q_k > := \int d^2 \lambda w(\lambda) P_l(\lambda)^* Q_k(\lambda) = h_j \delta_{jk},$$

$$Z_N = N! \prod_{j=0}^{N-1} h_j \text{ normalisation} = \text{partition function}$$

• e.g. Ginibre: $w(u) = e^{-|u|^2}$, $P_l(u) = Q_l(u) = u^l$, $h_l = \pi l!$

- ▶ $D_{11}(z_1)$ partition function wrt weight $w_{11}(z_1, \lambda)$
- ▶ $D_{11}(z_1, z_2)$ density, k-th conditioned overlapp:

- \triangleright $D_{11}(z_1)$ partition function wrt weight $w_{11}(z_1,\lambda)$
- $\triangleright D_{11}(z_1, z_2)$ density, k-th conditioned overlapp:

$$D_{11}(\lambda_1,\ldots,\lambda_k) := \frac{N!}{(N-k)!Z_N} \int d^2\lambda_{k+1}\ldots d^2\lambda_N |\Delta_N(\Lambda)|^2 \prod_{j=2}^N w_{11}(\lambda_j)$$

$$= \frac{N!e^{-|\lambda_1|^2}}{Z_N}\prod_{l=0}^{N-2} < P_l, Q_l > \det_{2 \le i,j \le k}\left[K_{11}(\lambda_i,\lambda_j^*)\right]$$

- ▶ $D_{11}(z_1)$ partition function wrt weight $w_{11}(z_1, \lambda)$
- \triangleright $D_{11}(z_1, z_2)$ density, k-th conditioned overlapp:

$$D_{11}(\lambda_{1},...,\lambda_{k}) := \frac{N!}{(N-k)!Z_{N}} \int d^{2}\lambda_{k+1}...d^{2}\lambda_{N} |\Delta_{N}(\Lambda)|^{2} \prod_{j=2}^{N} w_{11}(\lambda_{j})$$

$$= \frac{N!e^{-|\lambda_{1}|^{2}}}{Z_{N}} \prod_{l=0}^{N-2} \langle P_{l}, Q_{l} \rangle \det_{2 \leq i,j \leq k} \left[K_{11}(\lambda_{i},\lambda_{j}^{*}) \right]$$

▶ goal: determine kernel, orthogonal polynomials and norms wrt weight
$$w_{\bullet,\bullet}(\lambda_1) = e^{-|\lambda_1|^2} (1 + |z_1| - |\lambda_1|^2)$$

wrt weight $w_{11}(\lambda_l) = e^{-|\lambda_l|^2} (1 + |z_1 - \lambda_l|^2)$

- ▶ $D_{11}(z_1)$ partition function wrt weight $w_{11}(z_1, \lambda)$
- \triangleright $D_{11}(z_1, z_2)$ density, k-th conditioned overlapp:

$$D_{11}(\lambda_{1},...,\lambda_{k}) := \frac{N!}{(N-k)!Z_{N}} \int d^{2}\lambda_{k+1}...d^{2}\lambda_{N} |\Delta_{N}(\Lambda)|^{2} \prod_{j=2}^{N} w_{11}(\lambda_{j})$$

$$= \frac{N!e^{-|\lambda_{1}|^{2}}}{Z_{N}} \prod_{l=2}^{N-2} \langle P_{l}, Q_{l} \rangle \det_{2 \leq i,j \leq k} \left[K_{11}(\lambda_{i},\lambda_{j}^{*}) \right]$$

- goal: determine kernel, orthogonal polynomials and norms wrt weight $w_{11}(\lambda_l) = e^{-|\lambda_l|^2} (1 + |z_1 - \lambda_l|^2)$
- ightharpoonup simplest case $z_1 = \lambda_1 = 0$:

$$\begin{bmatrix}
w_{11}(\lambda) = e^{-|\lambda|^2} (1+|\lambda|^2), \\
P_I(\lambda) = Q_I(\lambda) = \lambda^I, h_I = \pi I! (I+2)
\end{bmatrix}$$

$$P_I(\lambda) = Q_I(\lambda) = \lambda', \ h_I = \pi I!(I+2)$$

- ▶ $D_{11}(z_1)$ partition function wrt weight $w_{11}(z_1, \lambda)$
 - \triangleright $D_{11}(z_1, z_2)$ density, k-th conditioned overlapp:

$$D_{11}(\lambda_1, \lambda_2) = \frac{N!}{\sqrt{d^2 \lambda_{k+1}}} \int_{0}^{\infty} d^2 \lambda_{k+1} d^2 \lambda_{k+1}$$

$$D_{11}(\lambda_1,\ldots,\lambda_k) := \frac{N!}{(N-k)!Z_N} \int d^2\lambda_{k+1}\ldots d^2\lambda_N |\Delta_N(\Lambda)|^2 \prod_{i=2}^N w_{11}(\lambda_i)$$

- $= \frac{N! e^{-|\lambda_1|^2}}{Z_N} \prod^{N-2} < P_l, Q_l > \det_{2 \le i,j \le k} \left[K_{11}(\lambda_i, \lambda_j^*) \right]$
 - goal: determine kernel, orthogonal polynomials and norms
 - wrt weight $w_{11}(\lambda_l) = e^{-|\lambda_l|^2} (1 + |z_1 \lambda_l|^2)$ ightharpoonup simplest case $z_1 = \lambda_1 = 0$:

$$\overline{W_{11}(\lambda) = e^{-|\lambda|^2}(1+|\lambda|^2)},$$

$$P_I(\lambda) = Q_I(\lambda) = \lambda^I, \ h_I = \pi I!(I+2)$$

 almost like Ginibre, heuristic argument (translational invariance) leads to large-N result

► Theorem 1 [A,Tribe, Tsareas, Zaboronski '19]

$$D_{11}(\lambda_1, \dots, \lambda_k) = \frac{1}{\pi} e^{-|\lambda_1|^2} f_{N-1}(|\lambda_1|^2) \det_{\mathbf{2} \le i, j \le k} \left[K_{11}(\lambda_i^*, \lambda_j) \right]$$
where $\mathbf{e}_{i, j} = \sum_{k=1}^{p} \sum_{j=1}^{N} \mathbf{e}_{i, j} = \mathbf{e$

where $e_p(x) = \sum_{l=0}^p \frac{x^l}{l!}$ exponential polynomials, $x = |\lambda_1|^2$,

$$f_{N-1}(x) = Ne_{N-1}(x) - xe_{N-2}(x),$$

► Theorem 1 [A,Tribe, Tsareas, Zaboronski '19]

$$\boxed{D_{11}(\lambda_1,\ldots,\lambda_k) = \frac{1}{\pi}e^{-|\lambda_1|^2}f_{N-1}(|\lambda_1|^2)\det_{\mathbf{2}\leq i,j\leq k}\left[K_{11}(\lambda_i^*,\lambda_j)\right]}$$

where $e_p(x) = \sum_{l=0}^p \frac{x^l}{l!}$ exponential polynomials, $x = |\lambda_1|^2$,

$$f_{N-1}(x) = Ne_{N-1}(x) - xe_{N-2}(x),$$

$$K_{11}(u^*, v) = \frac{1}{\pi} (1 + |u - \lambda_1|^2) e^{-|\lambda_1|^2} \frac{(N+1)F_{N+1}(x, \frac{u^*}{\lambda_1^*}, \frac{v}{\lambda_1}) - xF_N(x, \frac{u^*}{\lambda_1^*}, \frac{v}{\lambda_1})}{(u^* - \lambda_1^*)^2 (v - \lambda_1)^2 f_{N-1}(|\lambda_1|^2)}$$

$$F_n(x,y,z) = e_n(xy)e_n(xz) - e_n(xyz)e_n(x)(1-x(1-y)(1-z)) + \frac{1}{n!}(1-y)(1-z)\frac{(xyz)^{n+1}e_n(x) - x^{n+1}e_n(xyz)}{1-yz}$$

► Theorem 1 [A,Tribe, Tsareas, Zaboronski '19]

$$D_{11}(\lambda_1,\ldots,\lambda_k) = \frac{1}{\pi}e^{-|\lambda_1|^2}f_{N-1}(|\lambda_1|^2)\det_{\mathbf{2}\leq i,j\leq k}\left[K_{11}(\lambda_i^*,\lambda_j)\right]$$

where $e_p(x) = \sum_{l=0}^{p} \frac{x^l}{l!}$ exponential polynomials, $x = |\lambda_1|^2$,

$$f_{N-1}(x) = Ne_{N-1}(x) - xe_{N-2}(x),$$

$$K_{11}(u^*,v) = \frac{1}{\pi} (1 + |u - \lambda_1|^2) e^{-|\lambda_1|^2} \frac{(N+1)F_{N+1}(x,\frac{u^*}{\lambda_1^*},\frac{v}{\lambda_1}) - xF_N(x,\frac{u^*}{\lambda_1^*},\frac{v}{\lambda_1})}{(u^* - \lambda_1^*)^2(v - \lambda_1)^2 f_{N-1}(|\lambda_1|^2)}$$

$$F_n(x,y,z) = e_n(xy)e_n(xz) - e_n(xyz)e_n(x)(1-x(1-y)(1-z)) + \frac{1}{n!}(1-y)(1-z)\frac{(xyz)^{n+1}e_n(x) - x^{n+1}e_n(xyz)}{1-yz}$$

 \triangleright exact result for finite $N \forall k$

► Theorem 1 [A,Tribe, Tsareas, Zaboronski '19]

$$D_{11}(\lambda_1,\ldots,\lambda_k) = \frac{1}{\pi}e^{-|\lambda_1|^2}f_{N-1}(|\lambda_1|^2)\det_{2\leq i,j\leq k}\left[K_{11}(\lambda_i^*,\lambda_j)\right]$$

where $e_p(x) = \sum_{l=0}^{p} \frac{x^l}{l!}$ exponential polynomials, $x = |\lambda_1|^2$,

$$f_{N-1}(x) = Ne_{N-1}(x) - xe_{N-2}(x),$$

$$K_{11}(u^*,v) = \frac{1}{\pi} (1 + |u - \lambda_1|^2) e^{-|\lambda_1|^2} \frac{(N+1)F_{N+1}(x,\frac{u^*}{\lambda_1^*},\frac{v}{\lambda_1}) - xF_N(x,\frac{u^*}{\lambda_1^*},\frac{v}{\lambda_1})}{(u^* - \lambda_1^*)^2(v - \lambda_1)^2 f_{N-1}(|\lambda_1|^2)}$$

$$F_n(x,y,z) = e_n(xy)e_n(xz) - e_n(xyz)e_n(x)(1-x(1-y)(1-z)) + \frac{1}{n!}(1-y)(1-z)\frac{(xyz)^{n+1}e_n(x) - x^{n+1}e_n(xyz)}{1-yz}$$

- ightharpoonup exact result for finite $N \forall k$
- ightharpoonup example $D_{11}(\lambda_1)$ has no determinant

► Theorem 1 [A,Tribe, Tsareas, Zaboronski '19]

$$D_{11}(\lambda_1, \dots, \lambda_k) = \frac{1}{\pi} e^{-|\lambda_1|^2} f_{N-1}(|\lambda_1|^2) \det_{\mathbf{2} \le i, j \le k} \left[K_{11}(\lambda_i^*, \lambda_j) \right]$$
where $e_p(x) = \sum_{l=0}^p \frac{x^l}{l!}$ exponential polynomials, $x = |\lambda_1|^2$,

$$f_{N-1}(x) = Ne_{N-1}(x) - xe_{N-2}(x),$$

$$K_{11}(u^*,v) = \frac{1}{\pi}(1+|u-\lambda_1|^2)e^{-|\lambda_1|^2}\frac{(N+1)F_{N+1}(x,\frac{u^*}{\lambda_1^*},\frac{v}{\lambda_1})-xF_N(x,\frac{u^*}{\lambda_1^*},\frac{v}{\lambda_1})}{(u^*-\lambda_1^*)^2(v-\lambda_1)^2f_{N-1}(|\lambda_1|^2)}$$

$$F_n(x,y,z) = e_n(xy)e_n(xz) - e_n(xyz)e_n(x)(1-x(1-y)(1-z)) + \frac{1}{n!}(1-y)(1-z)\frac{(xyz)^{n+1}e_n(x) - x^{n+1}e_n(xyz)}{1-yz}$$

- \triangleright exact result for finite $N \forall k$
- \triangleright example $D_{11}(\lambda_1)$ has no determinant
- ▶ $D_{12}(\lambda_1,...,\lambda_k)$ can be defined similarly and follows from a generalisation of Lemma 1 to all k > 2

ightharpoonup \exists alternative way to express the kernel for arbitrary weight:

moment matrix
$$M_{ij} := \langle u^i, u^j \rangle = \int d^2 \lambda (\lambda^*)^i \lambda^j$$

$$\Rightarrow K(u^*, v) = (w(u)w(v))^{\frac{1}{2}} \sum_{i,j=0}^{N-1} (u^*)^i (M^{-1})_{ij} v^j$$

▶ ∃ alternative way to express the kernel for arbitrary weight:

moment matrix
$$M_{ij} := \langle u^i, u^j \rangle = \int d^2 \lambda (\lambda^*)^i \lambda^j$$

$$\Rightarrow \boxed{K(u^*, v) = (w(u)w(v))^{\frac{1}{2}} \sum_{i,j=0}^{N-1} (u^*)^i (M^{-1})_{ij} v^j}$$

- here M is tridiagonal: [Walters, Starr '14] $M_{ij} = i! [\delta_{ij} \left((1 + \lambda_1 \lambda_1^*) + (i+1) \right) \delta_{i+1,j} \lambda_1 (i+1) \delta_{i,j+1} \lambda_1^*]$
- ightharpoonup use decomposition M = LDU, where L & U easy to invert

ightharpoonup \exists alternative way to express the kernel for arbitrary weight:

moment matrix
$$M_{ij} := \langle u^i, u^j \rangle = \int d^2 \lambda (\lambda^*)^i \lambda^j$$

$$\Rightarrow K(u^*, v) = (w(u)w(v))^{\frac{1}{2}} \sum_{i,j=0}^{N-1} (u^*)^i (M^{-1})_{ij} v^j$$

- here M is tridiagonal: [Walters, Starr '14] $M_{ij} = i! [\delta_{ij} \left((1 + \lambda_1 \lambda_1^*) + (i+1) \right) \delta_{i+1,j} \lambda_1 (i+1) \delta_{i,j+1} \lambda_1^*]$
- ▶ use decomposition M = LDU, where L & U easy to invert

$$\Rightarrow P_k(u) = \sum_{l=0}^k (L^{*-1})_{kl} u^l = \sum_{l=0}^k \lambda_1^{k-l} \frac{f_l(|\lambda_1|^2)}{f_k(|\lambda_1|^2)} u^l$$

and $Q_k(v) = \sum_{l=0}^k v^l (U^{-1})_{lk} = P_l(v)$

 $ightharpoonup \exists$ alternative way to express the kernel for arbitrary weight:

moment matrix
$$M_{ij} := \langle u^i, u^j \rangle = \int d^2 \lambda (\lambda^*)^i \lambda^j$$

$$\Rightarrow \left[K(u^*, v) = (w(u)w(v))^{\frac{1}{2}} \sum_{i,j=0}^{N-1} (u^*)^i (M^{-1})_{ij} v^j \right]$$

- here M is tridiagonal: [Walters, Starr '14] $M_{ij} = i! [\delta_{ij} \left((1 + \lambda_1 \lambda_1^*) + (i+1) \right) \delta_{i+1,j} \lambda_1 (i+1) \delta_{i,j+1} \lambda_1^*]$
- ightharpoonup use decomposition M = LDU, where L & U easy to invert

$$\Rightarrow P_k(u) = \sum_{l=0}^k (L^{*-1})_{kl} u^l = \sum_{l=0}^k \lambda_1^{k-l} \frac{f_l(|\lambda_1|^2)}{f_k(|\lambda_1|^2)} u^l$$

and $Q_k(v) = \sum_{l=0}^k v^l (U^{-1})_{lk} = P_l(v)$

a very tedius calculation leads to a form that is amenable to the large-N limit

- Reminder eigenvalues density correlations:
 - global density: circular law
 - local bulk kernel $K(u^*, v) = \frac{1}{\pi} \exp[-|u|^2 |v|^2 + u^* v]$
 - local edge density $K(u^*,u) \sim \operatorname{erfc}$

- Reminder eigenvalues density correlations:
 - global density: circular law
 - local bulk kernel $K(u^*, v) = \frac{1}{\pi} \exp[-|u|^2 |v|^2 + u^* v]$
 - local edge density $K(u^*, u) \sim \operatorname{erfc}$
- Corollary 1 Local bulk limit (origin) for conditional overlap

$$\boxed{\lim_{N\to\infty}\frac{1}{N}D_{11}(\lambda_1,\ldots,\lambda_k)=\frac{1}{\pi}\det_{2\leq i,j\leq k}[K_{11}^{\text{bulk}}(\lambda_i^*,\lambda_j)]}$$

$$K_{11}^{\text{bulk}}(u^*,v) = \frac{1}{\pi}(1-|u-\lambda_1|^2)e^{-|u-\lambda_1|^2}\frac{d}{dz}\left(\frac{e^z-1}{z}\right)\Big|_{z=(u^*-\lambda_1^*)(v-\lambda_1)}$$

- Reminder eigenvalues density correlations:
 - global density: circular law
 - local bulk kernel $K(u^*, v) = \frac{1}{\pi} \exp[-|u|^2 |v|^2 + u^* v]$
 - local edge density $K(u^*,u) \sim \text{erfc}$
- Corollary 1 Local bulk limit (origin) for conditional overlap

$$\left| \lim_{N \to \infty} \frac{1}{N} D_{11}(\lambda_1, \dots, \lambda_k) = \frac{1}{\pi} \det_{2 \le i, j \le k} [K_{11}^{\text{bulk}}(\lambda_i^*, \lambda_j)] \right|$$

$$K_{11}^{\text{bulk}}(u^*, v) = \frac{1}{\pi} (1 - |u - \lambda_1|^2) e^{-|u - \lambda_1|^2} \frac{d}{dz} \left(\frac{e^z - 1}{z} \right) \Big|_{z = (u^* - \lambda_1^*)(v - \lambda_1)}$$

 agrees with kernel for complex eigenvalues of truncated unitary ensemble

- Reminder eigenvalues density correlations:
 - global density: circular law
 - local bulk kernel $K(u^*, v) = \frac{1}{\pi} \exp[-|u|^2 |v|^2 + u^* v]$
 - local edge density $K(u^*,u) \sim \operatorname{erfc}$
- Corollary 1 Local bulk limit (origin) for conditional overlap

$$\boxed{\lim_{N\to\infty}\frac{1}{N}D_{11}(\lambda_1,\ldots,\lambda_k)=\frac{1}{\pi}\det_{2\leq i,j\leq k}[K_{11}^{\text{bulk}}(\lambda_i^*,\lambda_j)]}$$

$$K_{11}^{\text{bulk}}(u^*,v) = \frac{1}{\pi}(1-|u-\lambda_1|^2)e^{-|u-\lambda_1|^2}\frac{d}{dz}\left(\frac{e^z-1}{z}\right)\Big|_{z=(u^*-\lambda_1^*)(v-\lambda_1)}$$

- agrees with kernel for complex eigenvalues of truncated unitary ensemble
- example for off-diagonal overlapp: [Chalker, Mehlig '99] heuristic $D_{12}^{\text{bulk}}(\lambda_1,\lambda_2) = \frac{1}{\pi^2|\lambda_1-\lambda_2|^4} \left(1-(1+|\lambda_1-\lambda_2|^2)e^{-|\lambda_1-\lambda_2|^2}\right)$

Corollary 2 Local edge scaling limit for conditional overlap

$$\lim_{N\to\infty} \frac{1}{\sqrt{N}} D_{11}\left(e^{i\theta}\left(\sqrt{N}+\lambda_1\right) = \frac{e^{-\frac{1}{2}(\lambda_1+\lambda_1^*)^2} - \frac{\sqrt{2\pi}}{2}(\lambda_1+\lambda_1^*)\text{erfc}\frac{(\lambda_1+\lambda_1^*)}{\sqrt{2}}}{\sqrt{2\pi^3}}\right)$$

▶ for $k \ge 2$: × det of edge kernel

Corollary 2 Local edge scaling limit for conditional overlap

$$\lim_{N\to\infty} \frac{1}{\sqrt{N}} D_{11}\left(e^{i\theta}\left(\sqrt{N}+\lambda_1\right) = \frac{e^{-\frac{1}{2}(\lambda_1+\lambda_1^*)^2} - \frac{\sqrt{2\pi}}{2}(\lambda_1+\lambda_1^*) erfc\frac{(\lambda_1+\lambda_1^*)}{\sqrt{2}}}{\sqrt{2\pi^3}}\right)$$

- ▶ for $k \ge 2$: × det of edge kernel
- conjecture: these local bulk & edge kernels are universal

Corollary 2 Local edge scaling limit for conditional overlap

$$\lim_{N \to \infty} \frac{1}{\sqrt{N}} D_{11} \left(e^{i\theta} \left(\sqrt{N} + \lambda_1 \right) = \frac{e^{-\frac{1}{2}(\lambda_1 + \lambda_1^*)^2} - \frac{\sqrt{2\pi}}{2}(\lambda_1 + \lambda_1^*) \text{erfc} \frac{(\lambda_1 + \lambda_1^*)}{\sqrt{2}}}{\sqrt{2\pi^3}} \right)$$

- ▶ for $k \ge 2$: × det of edge kernel
- conjecture: these local bulk & edge kernels are universal
- Corollary 3 Algebraic decay of overlaps

When all eigenvalues in the bulk have a large large separation: $\lambda_i - \lambda_j \ge \forall i \ne j = 1, ..., k$ we have

$$D_{11}^{\text{bulk}}(\lambda_1,\ldots,\lambda_k) = \frac{1}{\pi^k} \prod_{l=2}^k \left(1 - \frac{1}{|\lambda_1 - \lambda_l|^4}\right) + \mathcal{O}(e^{-L^2})$$

Corollary 2 Local edge scaling limit for conditional overlap

$$\lim_{N \to \infty} \frac{1}{\sqrt{N}} D_{11} \left(e^{i\theta} \left(\sqrt{N} + \lambda_1 \right) = \frac{e^{-\frac{1}{2}(\lambda_1 + \lambda_1^*)^2} - \frac{\sqrt{2\pi}}{2}(\lambda_1 + \lambda_1^*) \text{erfc} \frac{(\lambda_1 + \lambda_1^*)}{\sqrt{2}}}{\sqrt{2\pi^3}}$$

- ▶ for $k \ge 2$: × det of edge kernel
- conjecture: these local bulk & edge kernels are universal
- Corollary 3 Algebraic decay of overlaps

When all eigenvalues in the bulk have a large large separation: $\lambda_i - \lambda_j \ge \forall i \ne j = 1, \dots, k$ we have

$$\boxed{D_{11}^{\text{bulk}}(\lambda_1,\ldots,\lambda_k) = \frac{1}{\pi^k} \prod_{l=2}^k \left(1 - \frac{1}{|\lambda_1 - \lambda_l|^4}\right) + \mathcal{O}(e^{-L^2})}$$

the proof uses a relation between the overlap and eigenvalues correlation functions

Limiting relation in the bulk

$$D_{11}^{\text{bulk}}(\lambda_1, \dots, \lambda_k) = \prod_{l=2}^k \left(\frac{-1 - |\lambda_1 - \lambda_l|^2}{|\lambda_1 - \lambda_l|^4} \right) \left(1 - |\lambda_1 - \lambda_l|^2 - (\lambda_1 - \lambda_l) \frac{\partial}{\partial \lambda_l} \right)$$
$$\rho^{\text{bulk}}(\lambda_1, \dots, \lambda_k)$$

this hints at the possibility that the known universality of complex eigenvalue correlation functions could be transferred to the overlaps

Summary ...

- diagonal and off-diagonal overlapp are part of a DPP
- corresponding kernels computed explicitly for finite-N
- ▶ local large-N limits in bulk (origin) and at edge follow

... and open questions

- further explicit examples for which the DPP remains intact
- ▶ the computation of the kernel at finite-N is difficult to generalise
- are the local eigenvector correlations universal?
- global correlations from finite-N results?

