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Data denoising and matrix estimation

� Denoising : estimate a (locally) fixed signal out of noisy observations

Observation(t) = Signal+Noise(t) (t = 1, . . . , T )

Law of large numbers : in dimension 1, when T � 1,

Signal ≈ 1

T

∑
t

Observation(t)

� Matrix estimation : case where the signal is a matrix

� In small dimension, matrix estimation goes as classical estimation : error in

Signal ≈ 1

T

∑
t

Observation(t)

is small for each entry and the number of entries is small

� In large dimension, small errors on entries can add up to generate global
significative error



Covariance matrices estimation

� X(1), X(2), . . . , X(T ) independent observations of a (null mean) random

vector X =

X1

...
Xn


� Goal : estimation of the covariance matrix Cov(X) ∈ Rn×n

� Law of large numbers : if n small and T large, then

Cov(X) ≈ 1

T

∑
t

X(t)X(t)∗

� What if n is not small ?
� Error term in each entry : O(T−1/2)
↪→ Global error term n2T−1/2 : small when n4 � T
↪→ If n = 100 and t are (business) days : 400 000 years of (stationary)

observations are needed !
� In fact, approximation above is right as soon as T � n (Rudelson &

Vershynin, 2000’)
� ... and what if T 6� n ?



� Covariance matrices : Cov(X) 6≈ 1
T

∑
tX(t)X(t)∗ when T 6� n

Spectrum of 1
T

∑
tX(t)X(t)∗ histogram vs spectrum of Cov(X) for T/n = 10

↪→ in sample spectrum is widely dilated with respect to true one

� When T/n decreases (below, T/n = 2), this dilation becomes still wider :

� Consequences : risk over/under estimation for linear combinations of the
entries of X corresponding to largest/smallest eigenvectors



Cross-covariance matrices estimation

� For any t = 1, . . . , T , (X(t), Y (t)) observation of a pair of (null mean)

random vectors X =

X1

...
Xn

, Y =

Y1...
Yp


� Goal : estimation of the cross-covariance matrix

Cov(X,Y ) =
[
Cov(Xi, Yj)

]
i,j
∈ Rn×p

� Law of large numbers : if n, p small and T large, then

Cov(X,Y ) ≈ 1

T

∑
t

X(t)Y (t)∗

� But if n, p not small, same kind of problems as for covariance matrices



� Cross-covariance matrices : Cov(X,Y ) 6≈ 1
T

∑
tX(t)Y (t)∗ when

T 6� n, p

Singular values of 1
T

∑
tX(t)Y (t)∗ vs singular values of Cov(X,Y ) for X,Y ∼

N (0, In) and T/n = T/p = 10 : in sample singular values are widely dilated with
respect to true ones

� When T/n, T/p decrease (below, T/n = T/p = 2), this dilation becomes
still wider :

� Consequences : correlations over/under estimation between linear
combinations of the entries of X and Y corresponding to largest/smallest
singular vectors



Estimation technics

� Regularization : for structured covariance matrices (e.g. band matrix)
only (cf Bose et al.)

� Shrinkage : average the empirical estimate 1
T

∑
t with a guess of the true

value

� Clipping : turn all but a few eigenvalues (the largest ones) to a constant
value chosen so that a certain quantity (like the trace) is preserved

� Cleaning : clean the eigenvalues (resp. singular values) to make the
estimated matrix the closest as possible to the true one



Isotropy

Shrinkage, clipping and cleaning : eigenvectors (resp. singular vectors)
unchanged !

↪→ Agnostic on the directions of largest/smallest risk (resp. of
largest/smallest correlation)

↪→ Implicitely suppose that we have a prior on the true covariance (resp.
cross-covariance) that is Rotationally Invariant, i.e. invariant, in law, under
conjugation by any orthogonal matrix (resp. by multiplication on the left
and on the right by any orthogonal matrix) : Rotationally Invariant
Estimator (RIE)



Market eigenvectors are not isotropic...

...so ideally, in financial risk management, we should also clean eigenvectors

Problem : we do not know how to do that...



Rotationally Invariant Estimators

� 2 estimation problems :

� Estimate the true covariance Cov(X) given the empirical covariance
1
T

∑
tX(t)X(t)∗

� Estimate the true cross-covariance Cov(X,Y ) given the empirical
covariance 1

T

∑
tX(t)Y (t)∗

� Constraints : let eigenvectors/singular vectors unchanged

� Optimality : given this constraint, realize minimum distance to target

� Surprise : both problems have a computable solution !

� Covariance : Ledoit-Péché 2011 (+improvements by
Bun-Bouchaud-Potters-Knowles)

� Cross-covariance : B-Bouchaud-Potters 2018



� Starting point :
� Covariance estimation : write decompositions

Cov(X)emp =
1

T

∑
t

X(t)X(t)∗ =
∑
k

λkuku
∗
k

Cov(X)emp,cleaned =
∑
k

λcleaned
k uku

∗
k

Optimality : ‖Cov(X)emp,cleaned − Cov(X)true‖Frobenius minimal, which
rewrites :

λcleaned
k = u∗

k Cov(X)trueuk

� Cross-covariance estimation : in the same way, optimality rewrites as
follows : for

Cov(X,Y )emp =
1

T

∑
t

X(t)Y (t)∗ =
∑
k

skukv
∗
k,

Optimality : ‖Cov(X,Y )emp,cleaned − Cov(X,Y )true‖Frobenius minimal,
which rewrites :

scleanedk = u∗
k Cov(X,Y )truevk

� Problem : optimal solutions λcleanedk , scleanedk expressed in terms of the
unknown Cov(X)true, Cov(X,Y )true

↪→ RMT



RIE formulas

� Covariance matrices :

� Define the function

m(z) :=
1

n

n∑
k=1

1

λk − z
z ∈ C

(empirical covariance matrix Stieltjes transform)
� Then

λcleaned
k =

λk

|1− n
T
− n

T
λm(z)|2 for z := λk +

i

(nT )1/4

� Cross-covariance matrices :

scleanedk :=
=(L(z))
=(H(z))

sk for z = sk +
i

(npT )1/6

with L(z) = · · · , H(z) = · · · (complicated formulas)

� Performance accuracy : each of both RIEs is way better performing than
naive estimation on models with the good isotropy property



Cross-covariance RIE at work

� Null model : X,Y ∼ N (0, In), Cov(X,Y )true = 0 :

� Non null model : In sample (= Empirical) vs cleaned vs true singular
values



Cross-covariance RIE : non converging estimator !

Question : do we have :

Optimality =⇒ scleanedk ≈ sk at the limit ?

Reply : NO. On average,

Cleaned singular values < True singular values < Empirical singular values

Precisely :

E
∑
k

s2k =

(
1 +

1

T

)∑
k

(struek )2 +
2

T
TrCov(X)emp TrCov(Y )emp

and
E
∑
k

sks
cleaned
k =

∑
k

(struek )2

How come ? Optimal matrix estimator keeping empirical singular vectors
unchanged takes into account the fact that these vectors are noisy versions of
the true ones, hence reduces their weights by shrinking the singular values.



RIE formula : optimality condition

Optimality : for

Cov(X,Y )emp =
1

T

∑
t

X(t)Y (t)∗ =
∑
k

skukv
∗
k,

scleanedk are such that∥∥∥∥∥∑
k

scleanedk ukv
∗
k − Cov(X,Y )true

∥∥∥∥∥
Frobenius

is minimal,

i.e.∥∥[u1 · · · ] diag(scleaned1 , . . .)[v1 · · · ]∗ − Cov(X,Y )true
∥∥

Frobenius minimal,

i.e., using the left and right invariance of the Frobenius norm,∥∥diag(scleaned1 , . . .)− [u1 · · · ]∗ Cov(X,Y )true[v1 · · · ]
∥∥

Frobenius minimal,

i.e.

scleanedk =
(
[u1 · · · ]∗ Cov(X,Y )true[v1 · · · ]

)
kk

= u∗
k Cov(X,Y )truevk︸ ︷︷ ︸

To estimate ! !



RIE formula : estimation of u∗
k Cov(X, Y )truevk

Let

µ =
∑
k

(δsk + δ−sk) (singular values distribution of Cov(X,Y )emp)

and

ν =
∑
k

u∗
k Cov(X,Y )truevk (δsk − δ−sk) (the same with some weights)

Then

u∗
k Cov(X,Y )truevk =

dν

dµ
(sk) =

=(Stieltjes transf. of ν at sk + i0+)

=(Stieltjes transf. of µ at sk + i0+)

Problem : estimate, out of observable variables, the Stieltjes transf. of ν,
which happens to rewrite

Tr(Cov(X,Y )true︸ ︷︷ ︸
unknown ! !

)∗
(
z2 − Cov(X,Y )emp(Cov(X,Y )emp)∗

)−1
Cov(X,Y )emp

↪→ Stein formula, concentration of measure


