RIE for cross-covariance matrices (RIE = Rotationally Invariant Estimator)

Florent Benaych-Georges

Capital Fund Management

Joint work with Jean-Philippe Bouchaud (CFM) and Marc Potters (CFM)

April 30, 2019 Krakow

Data denoising and matrix estimation

Denoising : estimate a (locally) fixed signal out of noisy observations

$$Observation(t) = Signal + Noise(t) \qquad (t = 1, ..., T)$$

Law of large numbers: in dimension 1, when $T \gg 1$,

Signal
$$\approx \frac{1}{T} \sum_{t} \text{Observation}(t)$$

- Matrix estimation : case where the signal is a matrix
 - In small dimension, matrix estimation goes as classical estimation : error in

Signal
$$\approx \frac{1}{T} \sum_{t} \text{Observation}(t)$$

is small for each entry and the number of entries is small

 In large dimension, small errors on entries can add up to generate global significative error

Covariance matrices estimation

lacksquare X(1), X(2), ..., X(T) independent observations of a (null mean) random

$$\text{vector } X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

- **Goal**: estimation of the covariance matrix $Cov(X) \in \mathbb{R}^{n \times n}$
- Law of large numbers : if n small and T large, then

$$Cov(X) \approx \frac{1}{T} \sum_{t} X(t) X(t)^*$$

- What if *n* is not small?
 - Error term in each entry : $O(T^{-1/2})$
 - \hookrightarrow Global error term $n^2T^{-1/2}$: small when $n^4 \ll T$
 - \hookrightarrow If n=100 and t are (business) days : 400 000 years of (stationary) observations are needed!
 - In fact, approximation above is right as soon as $T\gg n$ (Rudelson & Vershynin, 2000')
 - \blacksquare ... and what if $T \gg n$?

■ Covariance matrices : $Cov(X) \not\approx \frac{1}{T} \sum_t X(t) X(t)^*$ when $T \gg n$

Spectrum of $\frac{1}{T}\sum_t X(t)X(t)^*$ histogram vs spectrum of $\operatorname{Cov}(X)$ for T/n=10 \hookrightarrow in sample spectrum is widely dilated with respect to true one

• When T/n decreases (below, T/n=2), this dilation becomes still wider :

Consequences: risk over/under estimation for linear combinations of the entries of *X* corresponding to largest/smallest eigenvectors

Cross-covariance matrices estimation

- For any $t=1,\ldots,T$, (X(t),Y(t)) observation of a pair of (null mean) random vectors $X=\begin{pmatrix} X_1\\ \vdots\\ X_n \end{pmatrix}$, $Y=\begin{pmatrix} Y_1\\ \vdots\\ Y_p \end{pmatrix}$
- Goal : estimation of the cross-covariance matrix

$$Cov(X, Y) = [Cov(X_i, Y_j)]_{i,j} \in \mathbb{R}^{n \times p}$$

• Law of large numbers : if n, p small and T large, then

$$Cov(X,Y) \approx \frac{1}{T} \sum_{t} X(t)Y(t)^*$$

B But **if** n, p **not small**, same kind of problems as for covariance matrices

■ Cross-covariance matrices : $Cov(X,Y) \not\approx \frac{1}{T} \sum_t X(t)Y(t)^*$ when $T \gg n,p$

Singular values of $\frac{1}{T}\sum_t X(t)Y(t)^*$ vs singular values of $\mathrm{Cov}(X,Y)$ for $X,Y\sim \mathcal{N}(0,I_n)$ and T/n=T/p=10: in sample singular values are widely dilated with respect to true ones

• When T/n, T/p decrease (below, T/n = T/p = 2), this dilation becomes still wider :

 Consequences: correlations over/under estimation between linear combinations of the entries of X and Y corresponding to largest/smallest singular vectors

Estimation technics

- Regularization: for structured covariance matrices (e.g. band matrix) only (cf Bose et al.)
- **Shrinkage** : average the empirical estimate $\frac{1}{T}\sum_t$ with a guess of the true value
- **Clipping**: turn all but a few eigenvalues (the largest ones) to a constant value chosen so that a certain quantity (like the trace) is preserved
- Cleaning: clean the eigenvalues (resp. singular values) to make the estimated matrix the closest as possible to the true one

Isotropy

Shrinkage, clipping and cleaning : eigenvectors (resp. singular vectors) unchanged!

- → Agnostic on the directions of largest/smallest risk (resp. of largest/smallest correlation)
- → Implicitely suppose that we have a prior on the true covariance (resp. cross-covariance) that is Rotationally Invariant, i.e. invariant, in law, under conjugation by any orthogonal matrix (resp. by multiplication on the left and on the right by any orthogonal matrix): Rotationally Invariant Estimator (RIE)

Market eigenvectors are not isotropic...

...so ideally, in financial risk management, we should also clean eigenvectors

Problem: we do not know how to do that...

Rotationally Invariant Estimators

- 2 estimation problems :
 - Estimate the true covariance Cov(X) given the empirical covariance $\frac{1}{T}\sum_t X(t)X(t)^*$
 - Estimate the true cross-covariance Cov(X,Y) given the empirical covariance $\frac{1}{T}\sum_t X(t)Y(t)^*$
- Constraints : let eigenvectors/singular vectors unchanged
- Optimality : given this constraint, realize minimum distance to target
- Surprise : both problems have a computable solution!
 - Covariance : Ledoit-Péché 2011 (+improvements by Bun-Bouchaud-Potters-Knowles)
 - Cross-covariance : B-Bouchaud-Potters 2018

- Starting point :
 - **Covariance estimation**: write decompositions

$$Cov(X)^{emp} = \frac{1}{T} \sum_{t} X(t) X(t)^* = \sum_{k} \lambda_k \mathbf{u}_k \mathbf{u}_k^*$$
$$Cov(X)^{emp,cleaned} = \sum_{k} \lambda_k^{cleaned} \mathbf{u}_k \mathbf{u}_k^*$$

Optimality : $\|\operatorname{Cov}(X)^{\operatorname{emp,cleaned}} - \operatorname{Cov}(X)^{\operatorname{true}}\|_{\operatorname{Frobenius}}$ minimal, which rewrites :

$$\lambda_k^{\text{cleaned}} = \mathbf{u}_k^* \operatorname{Cov}(X)^{\text{true}} \mathbf{u}_k$$

 Cross-covariance estimation : in the same way, optimality rewrites as follows : for

$$Cov(X,Y)^{emp} = \frac{1}{T} \sum_{t} X(t)Y(t)^* = \sum_{k} s_k \mathbf{u}_k \mathbf{v}_k^*,$$

Optimality : $\|\operatorname{Cov}(X,Y)^{\operatorname{emp,cleaned}} - \operatorname{Cov}(X,Y)^{\operatorname{true}}\|_{\operatorname{Frobenius}}$ minimal, which rewrites :

$$s_k^{\text{cleaned}} = \mathbf{u}_k^* \operatorname{Cov}(X, Y)^{\text{true}} \mathbf{v}_k$$

■ **Problem**: optimal solutions $\lambda_k^{\text{cleaned}}$, s_k^{cleaned} expressed in terms of the unknown $\text{Cov}(X)^{\text{true}}$, $\text{Cov}(X,Y)^{\text{true}}$

→ RMT

RIE formulas

Covariance matrices :

Define the function

$$m(z) := \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\lambda_k - z}$$
 $z \in \mathbb{C}$

(empirical covariance matrix Stieltjes transform)

Then

$$\lambda_k^{ ext{cleaned}} \ = \ rac{\lambda_k}{|1 - rac{n}{T} - rac{n}{T} \lambda m(z)|^2} \qquad ext{for} \qquad z := \lambda_k + rac{\mathrm{i}}{(nT)^{1/4}}$$

Cross-covariance matrices :

$$s_k^{\mathrm{cleaned}} := \frac{\Im(L(z))}{\Im(H(z))} s_k \quad \text{ for } z = s_k + \frac{\mathrm{i}}{(npT)^{1/6}}$$

with
$$L(z) = \cdots$$
, $H(z) = \cdots$ (complicated formulas)

 Performance accuracy: each of both RIEs is way better performing than naive estimation on models with the good isotropy property

Cross-covariance RIE at work

Null model: $X, Y \sim \mathcal{N}(0, I_n)$, $Cov(X, Y)^{true} = 0$:

 Non null model : In sample (= Empirical) vs cleaned vs true singular values

Cross-covariance RIE: non converging estimator!

Question: do we have:

Optimality
$$\implies$$
 $s_k^{\text{cleaned}} \approx s_k$ at the limit?

Reply: NO. On average,

Cleaned singular values < True singular values < Empirical singular values

Precisely:

$$\mathbb{E}\sum_{k} s_{k}^{2} = \left(1 + \frac{1}{T}\right) \sum_{k} (s_{k}^{\text{true}})^{2} + \frac{2}{T} \operatorname{Tr} \operatorname{Cov}(X)^{\text{emp}} \operatorname{Tr} \operatorname{Cov}(Y)^{\text{emp}}$$

and

$$\mathbb{E}\sum_{k} s_{k} s_{k}^{\text{cleaned}} = \sum_{k} (s_{k}^{\text{true}})^{2}$$

How come? Optimal *matrix estimator* keeping *empirical singular vectors unchanged* takes into account the fact that these vectors are noisy versions of the true ones, hence reduces their weights by *shrinking the singular values*.

RIE formula: optimality condition

Optimality: for

$$Cov(X,Y)^{emp} = \frac{1}{T} \sum_{t} X(t)Y(t)^* = \sum_{k} s_k \mathbf{u}_k \mathbf{v}_k^*,$$

 $s_k^{\rm cleaned}$ are such that

$$\left\| \sum_{k} s_{k}^{\text{cleaned}} \mathbf{u}_{k} \mathbf{v}_{k}^{*} - \text{Cov}(X, Y)^{\text{true}} \right\|_{\text{Erobenius}} \text{ is minimal,}$$

i.e.

$$\|[\mathbf{u}_1\cdots]\operatorname{diag}(s_1^{\operatorname{cleaned}},\ldots)[\mathbf{v}_1\cdots]^*-\operatorname{Cov}(X,Y)^{\operatorname{true}}\|_{\operatorname{\mathsf{Frobenius}}}$$
 minimal,

i.e., using the left and right invariance of the Frobenius norm,

$$\left\|\operatorname{diag}(s_1^{\operatorname{cleaned}},\ldots) - [\mathbf{u}_1\cdots]^*\operatorname{Cov}(X,Y)^{\operatorname{true}}[\mathbf{v}_1\cdots]
ight\|_{\operatorname{\mathsf{Frobenius}}} \quad \operatorname{\mathsf{minimal}},$$

i.e.

$$s_k^{\text{cleaned}} = \left([\mathbf{u}_1 \cdots]^* \operatorname{Cov}(X,Y)^{\text{true}} [\mathbf{v}_1 \cdots] \right)_{kk} = \underbrace{\mathbf{u}_k^* \operatorname{Cov}(X,Y)^{\text{true}} \mathbf{v}_k}_{\text{To estimate}!!}$$

RIE formula : estimation of $\mathbf{u}_k^* \operatorname{Cov}(X,Y)^{\operatorname{true}} \mathbf{v}_k$

Let

$$\mu = \sum_k \left(\delta_{s_k} + \delta_{-s_k} \right) \quad \text{(singular values distribution of } \mathrm{Cov}(X,Y)^{\mathrm{emp}} \text{)}$$

and

$$\nu = \sum_{k} \mathbf{u}_{k}^{*} \operatorname{Cov}(X, Y)^{\operatorname{true}} \mathbf{v}_{k} \left(\delta_{s_{k}} - \delta_{-s_{k}} \right) \quad \text{(the same with some weights)}$$

Then

$$\mathbf{u}_k^* \operatorname{Cov}(X,Y)^{\operatorname{true}} \mathbf{v}_k = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}(s_k) = \frac{\Im(\operatorname{Stieltjes\ transf.\ of\ }\nu\ \operatorname{at\ }s_k + \mathrm{i}0^+)}{\Im(\operatorname{Stieltjes\ transf.\ of\ }\mu\ \operatorname{at\ }s_k + \mathrm{i}0^+)}$$

Problem : estimate, out of **observable variables**, the Stieltjes transf. of ν , which happens to rewrite

$$\operatorname{Tr}(\underbrace{\operatorname{Cov}(X,Y)^{\operatorname{true}}})^* \left(z^2 - \operatorname{Cov}(X,Y)^{\operatorname{emp}}(\operatorname{Cov}(X,Y)^{\operatorname{emp}})^*\right)^{-1} \operatorname{Cov}(X,Y)^{\operatorname{emp}}$$

→ Stein formula, concentration of measure