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Part I. Signal Reconstruction:

Background Model and Setting of the Problem:

Signals are represented by N−dimensional source (column) vectors s ∈ RN .
The associated signal strength R is defined via the Euclidean norm as

R =
√

1
N (s, s).

By a (symmetric key) encryption of the source signal we understand a random
mapping s 7→ y ∈ RM known both to the sender and a recipient:

yk = Vk(s), k = 1, . . . ,M ,

where the collection of random functions V1(s), . . . , VM(s) represents an
encryption algorithm shared between the parties participating in the signal exchange.

Due to imperfect communication channels the recipients however get access to the
encrypted signals only in a corrupted form modified by an additive random noise,
i.e. z = y + b with the noise assumed to be normally distributed: b ∼ N (0, σ21M).
A natural parameter is then the ’bare’ noise-to-signal ratio (NSR) γ = σ2/R2.

The recipient’s aim is to reconstruct the source signal s from the knowledge of z.



Background Model and Setting of the Problem II:

We consider the reconstruction problem under a few technical assumptions:

• The recipient is aware of the exact source signal strength R =
√

1
N (s, s), and

therefore can restrict the signal search to the feasibility set W given by
(N − 1)−dimensional sphere of the radius R

√
N .

• The random functions Vk(s) belong to the class of (smooth) isotropic mean-zero
Gaussian-distributed random fields on the sphere with the covariance structure
dependent only on the angle between the vectors:

〈Vk(x)Vl(s)〉 = δlkΦ
(

(x,s)
N

)
,

where the angular brackets 〈. . .〉 denote the expected values. As our basic
example we will consider the linear-quadratic family:

Vk(x) = (ak, x) + 1
2(x,J (k)x) ,

where ak ∼ N (0,
J2

1
N 1N), and the entries of N × N real symmetric GOE-

like random matrices J (k), k = 1, . . . ,M are mean-zero i.i.d. normal with the

variance J2
2

N2 . This results in the covariance of the form Φ (u) = J2
1 u+ 1

2J
2
2u

2.



Background Model and Setting of the Problem III:

• We consider the input signal s through the reconstruction procedure as a fixed
vector, and then employ the Least-Square reconstruction scheme, which for a
given set of observations zk = Vk(s) + bk returns an estimate of the input signal
as:

x := Argminw

[∑M
k=1

(zk−Vk(w))2

2

]
, w ∈W ⊆ RN ,

where W is the sphere of feasible input signals. This scheme has the meaning of
the Maximum–A-Posteriori (MAP) estimator with a uniform prior distribution over
the sphere W.

• The quality of the reconstruction will be characterized via the ratio

pN := (x,s)
NR2 ∈ [0, 1] ,

where pN = 1 corresponds to a reconstruction without any macroscopic
distortion, whereas pN = 0 manifests impossibility to recover any information
from the originally encrypted signal.
Our goal: Evaluate pN for N � 1 as a function of the Noise-to-Signal ratio for a
given degree of redundancy µ = M/N > 1 and nonlinearity a = R2J2

2/J
2
1 .



Remarks on the Method I:
Given the fixed signal s we interpret the cost/loss function

Hs(x) =
∑M
k=1

(bk+Vk(s)−Vk(x))2

2 ,

as an energy associated with a vector of N ’soft spins’ xT = (x1, . . . , xN), with
the configurations constrained to the sphere W of radius |x| = N

√
R. In this way

we can put the least square minimization problem in the context of spin glass-like
Statistical Mechanics after introducing the inverse temperature parameter β > 0,
and defining the partition function of the model as

Zβ =
∫
W e
−βHs(x)dx, dx =

∏N
i=1 dxi .

We then consider the (Boltzmann) Gibbs weights πβ(x) = Z−1
β e−βHs(x) associated

with any configuration x on the sphere W. In the zero-temperature limit β →∞ the
weights πβ(x) concentrate on the set of globally minimal values of the cost function.
In particular, by considering 〈

p
(β)
N

〉
:=
〈

1
Zβ

∫
W

(x, s)

NR2 e
−βHs(x)dx

〉
V,b

we aim to evaluating p∞ := limβ→∞ limN→∞

〈
p

(β)
N

〉
providing us with a measure

of the quality of the signal reconstruction. J W Gibbs (1839–1903)



Main Results for General Nonlinearity I:

Given the source signal strength R > 0 , and the redundancy µ = M/N > 1, the
mean value of the parameter pN characterising quality of the information recovery in
the Least-Square reconstruction scheme with the noise b ∼ N (0, σ21M) is given
asymptotically for N →∞ by

p∞ := limN→∞ 〈pN〉 = t
R ,

where the specific value of t ∈ [0, R] should be found in the framework of the
Parisi scheme of the Full Replica Symmetry Breaking (FRSB) by minimizing the
functional

E [ws(u);Q, v, t] = −

[
R2−t2−Q

v+
∫R2

R2−Qws(u) du
+
∫ R2

R2−Q
dq

v+
∫R2

q ws(u) du

]

+µ

[
σ2+Φ(R2)−2Φ(Rt)+Φ(R2−Q)

1+vΦ′(R2)+
∫R2

R2−Qws(u)Φ′(u) du
+
∫ R2

R2−Q
Φ′(q) dq

1+vΦ′(R2)+
∫R2

q ws(u)Φ′(u) du

]
,

over t, and maximizing it over all the variables
v ≥ 0 and Q ∈ [0, R2] and over a non-decreasing function
ws(u) with the argument u ∈ [R2 −Q,R2].

Giorgio Parisi



Main Result for General Nonlinearity II:

• In a certain range of parameters (e.g. the redundancy and nonlinearity) the above
variational problem is solved by the Replica-Symmetric Ansatz Q = 0. In that
case for a given ’bare’ Noise-to-Signal ratio γ = σ2/R2 the quality parameter
p∞ = p ∈ [0, 1] is given by the solution of a single algebraic equation:

p2
(
γ + 2 Φ(R2)−Φ(R2p)

R2

)
= µ(1− p2)

[Φ′(R2p)]
2

Φ′(R2)
.

• For the alternative range of parameters the variational problem can be solved by
the FRSB Ansatz assuming the minimizer function ws(u) to be continuous and
non-decreasing for u ∈ [R2 − Q,R2]. In that case the value p∞ = p is given
by the solution of the system of a pair of algebraic equations in the variables
p ∈ [0, 1] and Q ∈ (0, R2]:

µ
[
Φ′(R2p)

]2 (
R2(1− p2)−Q)

)
= p2Φ′(R2 −Q)

[
R2γ + Φ(R2)− 2Φ(R2p) + Φ(R2 −Q)

]
and[

Φ′(R2 −Q)
]3
p2 = µ

[
Φ′(R2p)

]2 [
Φ′(R2 −Q)− Φ′′(R2 −Q)

(
R2(1− p2)−Q

)]
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Figure 1: Schematic Phase diagram in (a = J2
2/J

2
1 , µ = M/N) plane for Linear-Quadratic

encryptions. In the shaded region of parameters 1 < µ < (a2/3−a1/3+1)3

a replica symmetry must be

fully broken for some amplitude of the noise.



Reconstruction quality for purely quadratic encryptions a =∞:
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Figure 2: The quality parameter p as a function of the scaled noise-to-signal ratio γ̂ = σ2

J2
2R

4 for

purely quadratic encryptions and two different redundancies: µ = 2 (left) and µ = 4 (right).

There always exists a threshold value γ̂c(µ) such that p∞ = 0 for γ̂ > γ̂c(µ) making the

reconstruction impossible beyond some level of noise. The behaviour close to the threshold is given

by p∞ ∼ (γ̂c − γ̂)3/4 and is controlled by the replica symmetry breaking mechanism.

The blue broken curve is the continuation of the replica-symmetric solution in the region of Full RSB.



Open questions:

The problem is shown to be equivalent to finding the configuration of minimal energy
in a certain version of spherical spin glass model, with squared Gaussian random
interaction potential. It would be interesting and instructive, in particular,

• to develop rigorous approach to this type of landscapes beyond replicas, in
particular to study complexity associated with the stationary points/minima. So
far we managed to do it only for the special type of purely linear Least Square
schemes (with R. Tublin, part II)

• to study fluctuations in the overlap and/or in the depth of global minimum, etc.

• Analyze gradient search dynamics on the sphere.



Part II. Loss function Landscape in the simplest case:

The simplest optimization problem of the least-square type on the sphere
x ∈ RN , x2 = const arises in the Multiple Factor Data Analysis and is known as

the Oblique Procrustes Problem:

For a given pair of M × N matrices A and B find such N × N matrix X that the
equality B = AX holds as close as possible and columns xi ∈ RN , i = 1, . . . N
are of unit length.

For M > N this system of linear equations is overcomplete and a solution can be
found separately for each column x by minimizing the loss/cost function

H(x) = 1
2||Ax− b||2 := 1

2

∑M
k=1

[∑N
j=1Akjxj − bk

]2
, x2 = const

The problem was first analysed in that setting by M. W. BROWNE in 1967, and then
independently by numerical mathematicians (e.g. W. GANDER 1981) who used
the Lagrange multiplier to take care of the spherical constraint. Introducing the
Lagrangian Lλ,s(x) = H(x)− λ

2(x,x), with real λ being the Lagrange multiplier, the
stationary conditions ∇Lλ,s(x) = 0 yields linear system:

AT [Ax− b] = λx, ⇒ x = (ATA− λIN)−1ATb



Setting of the problem:

The spherical constraint x2 = N yields the equation for λ in the form:

bTA 1

(ATA−λIN)
2 A

Tb = N

which is equivalent to a polynomial equation of degree 2N in λ. Each real solution
for the Lagrange multiplier λi corresponds to a stationary point xi of the loss
function H(x) = 1

2||Ax − b||2 on the sphere x2 = N and one can show that the
order λ1 < λ2 < . . . < λN implies H(x1) < H(xj) < . . . < H (xN ). Thus the
minimal loss is given by Emin = H (x1).

Our goal: To count the stationary points via the Lagrange multipliers

λi, i = 1, . . . ,N ≤ 2N

and eventually find the minimal loss Emin after assuming the entries Akj of M ×
N, M > N matrix A to be i.i.d. normal real variables such that ATA = W is N×N
Wishart matrix with the probability density

PN,M(W ) = CN,Me
−N2 TrW (detW )

M−N−1
2

We will also assume for convenience that the vector b is normally distributed: b = σ ξ

with σ > 0 and the components of ξ = (ξ1, . . . , ξM)T are mean zero standard normals.



Qualitative considerations:

The equation for the Lagrange multiplier can be conveniently written in terms of N
nonzero eigenvalues s1, . . . , sN of M ×M matrix W (a) = AAT and the associated
eigenvectors vi:

N∑
i=1

si
(λ−si)2(ξTvi)

2 = N
σ2
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Counting zeroes via Kac-Rice formula:

Mark Kac (1914-1984) and Stephen O. Rice (1907-1986)

Number N(a,b) of simple zeroes of a (smooth enough) function f(x) in x ∈ (a, b)
can be found via

N(a,b) =
∫ b
a
δ(f(x))|f ′(x)| dx



Counting Lagrange multipliers via the Kac-Rice formula:

The numberNst[a, b] of real solutions of the equation AT [Ax− b]− λx = 0 on the
sphere x2 = N such that λ ∈ [a, b] can be counted by employing the Kac-Rice type
formula

Nst[a, b] =
∫ b
a
dλ
∫
δ
[
AT (Ax− b)− λx

]
δ
(
x2 −N

)
×
∣∣∣∣det

(
ATA− λIN x
−2xT 0

)∣∣∣∣ dx
Using Gaussianity of both the matrix entries Aij ∼ N (0, 1) and the vector components

b ∼ NM(0, IMσ
2) and introducing the parameter δ = 1

2 ln (1 + σ2) one can eventually find the

mean number of solutions as

E {Nst[a, b]} =
∫ b
a
p(λ) dλ

with the density p(λ) for λ > 0 given by

p(λ ≥ 0) = 2
√

N
π
e−

M+N−1
2 δ

√
sinh δ

KM−N
2

(
Nλ

2 sinh δ

)
e
Nλ
2 coth δ 〈ρN(λ)〉

√
λ

where Kν(z) is the Bessel-Macdonald function, and 〈ρN(λ)〉 stands for the mean eigenvalue

density ofN ×N Wishart matrixW = ATA presented for anyM,N in Introduction to Random
Matrices: Theory and Practice by G. Livan,M. Novaes and P. Vivo (Springer 2018).



Counting Lagrange multipliers via the Kac-Rice formula :

For negative values of the Lagrange multiplier λ we have instead:

p(λ < 0) = N !N(M−N)/2

2(M+N−3)/2
1

Γ(N2 )Γ(M2 )
e−(M+N−1)δ/2
√

sinh δ
e−

1
2N |λ|(coth δ−1)|λ|(M−N)/2

×

[
N−1∑
j=0

(
M−1
N−1−j

)
1
j!(N |λ|)

j

]
KM−N

2

(
N |λ|

2 sinh δ

)
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Large Deviations for the smallest Lagrange multiplier:

For large N →∞, fixed 1 < µ = M/N <∞ and fixed finite σ2 > 0 the probability
density for the smallest Lagrange multiplier λmin has the Large Deviation form:

p(λmin)|λmin<s− ∼ e−
N
2 Φ(λmin), Φ(λ) = L1(λ) + L2(λ) + (µ+1)

2 ln (1 + σ2),

where s− = (
√
µ− 1)2 is the ’Marchenko-Pastur’ left edge and for κ = (µ−1)σ2

2
√

1+σ2

L1(λ) = (µ− 1)

{√
λ2+κ2

κ − ln
(
κ+
√
λ2 + κ2

)
− λ
√

(µ−1)2+κ2

(µ−1)κ

}
L2(λ) = −

√
(λ− s−)(λ− s+)− 2 ln

(µ+1−λ+
√

(λ−s−)(λ−s+))
2
√
µ

+2(µ− 1) ln
(µ−1+λ+

√
(λ−s−)(λ−s+))
2
√
µ

One finds that Φ(λ) is minimized for

λ = λ∗ = (
√
µ−
√

1 + σ2)

(
√
µ− 1√

1+σ2

)
which eventually implies the most probable value of the minimal loss/error:

limN→∞
Emin
N = 1

2

[√
µ(1 + σ2)− 1

]2
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Conclusions:

• We counted the mean number of stationary points of the simplest ’least-square’
optimization problem on a sphere via the Lagrange multipliers in various scaling
regimes, and found the typical minimal loss Emin.

• Open questions:

– Fluctuations of the counting function,
– large/small deviations of the minimal loss Emin
– Gradient search dynamics on the sphere
– Landscape for a nonlinear ’least-square’ optimization, etc.
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