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Motivation: the pitfalls of large dimensional statistics

The big data era: both large dimensional and massive amount of data, the
number of instances n and their dimension p are both large,

I large size high resolution images, more involved machine learning systems.

Counterintuitive phenomenon in the large n, p regime, e.g.,

I The “curse of dimensionality” phenomenon:
little difference between Euclidean distance ‖xi − xj‖ from the same or
different clusters (classes), xi,xj ∈ Rp for p large.

I Classical machine learning algos (e.g., kernel spectral clustering) still work for
large dimensional data, although we do not understand why . . .

In need of refinement to understand and improve modern machine learning
methods for large dimensional problems, made possible with RMT.

From a RMT viewpoint: with nonlinearity involved and of implicit solution
(from an optimization problem)
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Sample covariance matrix in the large n, p regime

For xi ∼ N (0,C), estimate the covariance matrix from n data samples
X = [x1, . . . ,xn] ∈ Rp×n.

Classical maximum likelihood sample covariance matrix:

Ĉ =
1

n

n∑
i=1

xix
T
i =

1

n
XXT ∈ Rp×p

of rank at most n.

In the regime where n ∼ p, conventional wisdom breaks down, for C = Ip
with n < p, SCM will never be correct:

‖C− Ĉ‖ 6→ 0, n, p→∞

with at least p− n zero eigenvalues!

Typically what happens in deep learning: try to fit an enormous statistical
model (60.2 M of ResNet-152) with insufficient, but still numerous data
(14.2 M images of ImageNet dataset).
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When is one under random matrix regime?

For C = Ip, as n, p→∞ with p/n→ c ∈ (0,∞): the Marc̆enko–Pastur law

µ(dx) = (1 + c−1)+δ(x) +
1

2πcx

√
(x− a)+(b− x)+ (1)

where a = (1−
√
c)2, b = (1 +

√
c)2 and (x)+ ≡ max(x, 0).

eigenvalues span on [(1−
√
c)2, (1 +

√
c)2].

for n = 100p, spread on a range of 4
√
c = 0.4 around the true value 1.
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Empirical eigenvalues of Ĉ

Marc̆enko-Pastur law

Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.
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Reminder on kernel spectral clustering

Two-step classification of n data points based on similarity S ∈ Rn×n:

0 spikes

⇓ Top eigenvectors ⇓

E
ig

en
v.

1
E

ig
en

v.
2
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Loss of relevance of Euclidean distance

Simplest binary Gaussian mixture classification setting

C1 :x = µ+ z, x ∼ N (µ, Ip);

C2 :x = −µ+ (Ip + E)
1
2 z, x ∼ N (−µ, Ip + E).

for z ∼ N (0, Ip).

Neyman-Pearson test tells us: classification is non-trivial only when

‖µ‖ ≥ O(1), ‖E‖ ≥ O(p−1/2), | trE| ≥ O(
√
p), ‖E‖2F ≥ O(1).

In this non-trivial setting, for xi ∈ Ca,xj ∈ Cb,

1

p
‖xi − xj‖2 =

{
1
p‖zi − zj‖2 +Ap−1/2, for a = b = 2;
1
p‖zi − zj‖2 +Bp−1/2, for a = 1, b = 2

(2)

For A,B both of order O(1) and A > B with high probability for p large, so

max
1≤i 6=j≤n

{
1

p
‖xi − xj‖2 − 2

}
→ 0 (3)

almost surely as n, p→∞.
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Kernel spectral clustering for large dimensional data

Objective: “cluster” data x1, . . . ,xn into K similarity classes.

Consider the RBF kernel matrix Kij = exp
(
− 1

2p‖xi − xj‖2
)

.

K =





v2 =
[ ]

K =




v2 =

[ ]

Figure: Kernel matrices K and the second top eigenvectors v2 for small (left,
p = 5, n = 500) and large (right, p = 250, n = 500) dimensional data.
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But why kernel spectral clustering works?

The accumulated effect of the small “hidden” statistical information (in µ,E).

K = exp(−1)
(

1n1T
n +

1

p
ZTZ

)
+ g(µ,E)

1

p
jjT + ∗+ o‖·‖(1) (4)

with Z = [z1, . . . , zn] ∈ Rp×n and j = [1n/2;−1n/2], the class-information vector.

Therefore

entry-wsie: for Kij = exp
(
− 1

2p‖xi − xj‖2
)

,

Kij = exp(−1)
(
1 +

1

p
zT
i zj︸ ︷︷ ︸

O(p−1/2)

)
± 1

p
g(µ,E)︸ ︷︷ ︸
O(p−1)

+∗

so that 1
pg(µ,E)� 1

pzT
i zj ;

spectrum-wise: ‖ 1pZTZ‖ = O(1) and ‖g(µ,E) 1p jjT‖ = O(1) as well!
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Z. Liao and R. Couillet (CentraleSupélec) Recent Advances in RMT for Modern ML May 1, 2019, Kraków, Poland 13 / 31



Outline

1 Motivation

2 Sample covariance matrix for large dimensional data

3 RMT for machine learning: kernel spectral clustering

4 RMT for machine learning: random neural networks

5 From theory to practice
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Neural networks and deep learning

X

W1. . .WL+1

Figure: Illustration of L-hidden-layer nonlinear neural networks
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Figure: Illustration of L-hidden-layer nonlinear neural networks

with nonlinear activation function σ(z): ReLU(z) = max(z, 0), Leaky ReLU
max(z, az) (a > 0) or sigmoid σ(z) = (1 + e−z)−1, arctan, tanh, etc.
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Random neural network with single hidden layer

X ∈ Rp×n

σ
σ
σ
σ
σ

Σ ≡ σ(WX)

random features

βTΣ

W ∈ RN×pβ ∈ RN

For random W and n, p,N large, 1
NΣTΣ is closely related to

K ≡ 1

N
EW[σ(WX)Tσ(WX)]

For Gaussian Wij ∼ N (0, 1), K is explicit for some σ(·) via an integral trick

Kij = Ew[σ(wTxi)σ(w
Txj)] = (2π)−

p
2

∫
Rp
σ(wTxi)σ(w

Txj)e
− ‖w‖

2

2 dw

=
1

2π

∫
R2

σ(w̃Tx̃i)σ(w̃
Tx̃j)e

− ‖w̃‖
2

2 dw̃

with x̃i = [‖xi‖; 0] and x̃j =
[ xT
i xj
‖xi‖

;

√
‖xj‖2 −

(xT
i
xj)

2

‖xi‖2
]
.
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Nonlinearity in simple random neural networks

Table: Ki,j for commonly used σ(·), ∠ ≡ xT
i xj

‖xi‖‖xj‖
.

σ(t) Ki,j

t xT
i xj

max(t, 0) 1
2π
‖xi‖‖xj‖

(
∠ arccos (−∠) +

√
1− ∠2

)
|t| 2

π
‖xi‖‖xj‖

(
∠ arcsin (∠) +

√
1− ∠2

)
ς+ max(t, 0)+
ς−max(−t, 0)

1
2
(ς2+ + ς2−)x

T
i xj +

‖xi‖‖xj‖
2π

(ς+ + ς−)2
(√

1− ∠2 − ∠ · arccos(∠)
)

1t>0
1
2
− 1

2π
arccos (∠)

sign(t) 2
π
arcsin (∠)

ς2t2 + ς1t+ ς0 ς22
(
2
(
xT
i xj

)2
+ ‖xi‖2‖xj‖2

)
+ ς21x

T
i xj + ς2ς0

(
‖xi‖2 + ‖xj‖2

)
+ ς20

cos(t) exp
(
− 1

2

(
‖xi‖2 + ‖xj‖2

))
cosh(xT

i xj)

sin(t) exp
(
− 1

2

(
‖xi‖2 + ‖xj‖2

))
sinh(xT

i xj)

erf(t) 2
π
arcsin

( 2xT
i xj√

(1+2‖xi‖2)(1+2‖xj‖2)

)
exp(− t

2

2
) 1√

(1+‖xi‖2)(1+‖xj‖2)−(xT
i xj)

2

⇒(still) highly nonlinear functions of the data x!
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Dig Deeper into K

Data: K-class Gaussian mixture model

xi ∈ Ca ⇔ xi = µa/
√
p+ zi

with zi ∼ N (0,Ca/p), a = 1, . . . ,K of statistical mean µa and covariance Ca.

Non-trivial classification (again)

For p large, ‖µa − µb‖ = O(1), ‖Ca‖ = O(1) and tr(Ca −Cb) = O(
√
p).

As a consequence,

‖xi‖2 = ‖zi‖2︸ ︷︷ ︸
O(1)

+ ‖µa‖2/p+ 2µT
azi/
√
p︸ ︷︷ ︸

O(p−1)

= trCa/p︸ ︷︷ ︸
O(1)

+ ‖zi‖2 − trCa/p︸ ︷︷ ︸
O(p−1/2)

+ ‖µa‖2/p+ 2µT
azi/
√
p︸ ︷︷ ︸

O(p−1)

Then for C◦ =
∑K
a=1

na
n Ca and Ca = C◦a + C◦ for a = 1, . . . ,K,

⇒ ‖xi‖2 = τ +O(p−1/2) with τ ≡ tr(C◦)/p,

‖xi − xj‖2 ≈ 2τ !
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As a consequence,

‖xi‖2 = ‖zi‖2︸ ︷︷ ︸
O(1)

+ ‖µa‖2/p+ 2µT
azi/
√
p︸ ︷︷ ︸

O(p−1)

= trCa/p︸ ︷︷ ︸
O(1)

+ ‖zi‖2 − trCa/p︸ ︷︷ ︸
O(p−1/2)

+ ‖µa‖2/p+ 2µT
azi/
√
p︸ ︷︷ ︸

O(p−1)

Then for C◦ =
∑K
a=1

na
n Ca and Ca = C◦a + C◦ for a = 1, . . . ,K,

⇒ ‖xi‖2 = τ +O(p−1/2) with τ ≡ tr(C◦)/p,

‖xi − xj‖2 ≈ 2τ !
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Understand nonlinearity in random neural networks

Asymptotic Equivalent of K

For all σ(·) listed in the table above, we
have, as n ∼ p→∞,

‖K− K̃‖ → 0

almost surely, with

K̃ ≡ d1
(
Z+M

JT

√
p

)T(
Z+M

JT

√
p

)
+ d2UBUT + d0In

and

U ≡
[

J√
p
,φ
]
, B ≡

[
ttT + 2S t

tT 1

]
.

Table: Coefficients di in K̃ for different σ(·).

σ(t) d1 d2

t 1 0

max(t, 0) 1
4

1
8πτ

|t| 0 1
2πτ

1t>0
1

2πτ
0

sign(t) 2
πτ

0

ς2t2 + ς1t+ ς0 ς21 ς22

cos(t) 0 e−τ

4

sin(t) e−τ 0

erf(t) 4
π

1
2τ+1

0

exp(− t
2

2
) 0 1

4(τ+1)3

J ≡ [j1, . . . , jK ], ja canonical vector of Ca, weighted by z, φ random fluctuations of data and

M ≡ [µ1, . . . ,µK ], t ≡
{
trC◦a/

√
p
}K
a=1

, S ≡ {tr(CaCb)/p}Ka,b=1 the statistical information.
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Z. Liao and R. Couillet (CentraleSupélec) Recent Advances in RMT for Modern ML May 1, 2019, Kraków, Poland 19 / 31



Consequence

Table: Coefficients di in K̃ for different σ(·).

σ(t) d1 d2

t 1 0

max(t, 0) 1
4

1
8πτ

|t| 0 1
2πτ

1t>0
1

2πτ
0

sign(t) 2
πτ

0

ς2t2 + ς1t+ ς0 ς21 ς22

cos(t) 0 e−τ

4

sin(t) e−τ 0

erf(t) 4
π

1
2τ+1

0

exp(− t
2

2
) 0 1

4(τ+1)3

A natural classification of σ(·):

mean-oriented, d1 6= 0, d2 = 0:
t, 1t>0, sign(t), sin(t) and erf(t)
⇒ separate with difference in M;

cov-oriented, d1 = 0, d2 6= 0:
|t|, cos(t) and exp(−t2/2)
⇒ track differences in cov t, S;

“balanced”, both d1, d2 6= 0:
I ReLU function max(t, 0),
I quadratic function
ς2t

2 + ς1t+ ς0.

⇒ make use of both statistics!
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Numerical Validations: Gaussian Data

Example: Gaussian mixture data of four classes: N (µ1,C1), N (µ1,C2),
N (µ2,C1) and N (µ2,C2) with different σ(·) functions.

Case 1: linear map σ(t) = t.

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

C1 C2 C3 C4

Case 2: σ(t) = |t|.

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

C1 C2 C3 C4
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Z. Liao and R. Couillet (CentraleSupélec) Recent Advances in RMT for Modern ML May 1, 2019, Kraków, Poland 21 / 31



Numerical Validations: Gaussian Data

Case 3: the ReLU function σ(t) = max(t, 0).

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

C1 C2 C3 C4

Eigenvector 1

E
ig

en
ve

ct
or

2
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Numerical Validations: Real Datasets

Figure: The MNIST image database.

time

Figure: The epileptic EEG datasets.1

Codes available at https://github.com/Zhenyu-LIAO/RMT4RFM.

1http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html.
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Numerical Validations: Real Datasets

Table: Empirical estimation of statistical information of the MNIST and EEG datasets.

‖MTM‖ ‖ttT + 2S‖

MNIST data 172.4 86.0
EEG data 1.2 182.7

Table: Clustering accuracies on MNIST.

σ(t) n = 64 n = 128

mean-
oriented

t 88.94% 87.30%
1t>0 82.94% 85.56%
sign(t) 83.34% 85.22%
sin(t) 87.81% 87.50%

cov-
oriented

|t| 60.41% 57.81%
cos(t) 59.56% 57.72%

exp(−t2/2) 60.44% 58.67%
balanced ReLU(t) 85.72% 82.27%

Table: Clustering accuracies on EEG.

σ(t) n = 64 n = 128

mean-
oriented

t 70.31% 69.58%
1t>0 65.87% 63.47%
sign(t) 64.63% 63.03%
sin(t) 70.34% 68.22%

cov-
oriented

|t| 99.69% 99.50%
cos(t) 99.38% 99.36%

exp(−t2/2) 99.81% 99.77%
balanced ReLU(t) 87.91% 90.97%
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Outline

1 Motivation

2 Sample covariance matrix for large dimensional data

3 RMT for machine learning: kernel spectral clustering

4 RMT for machine learning: random neural networks

5 From theory to practice
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From theory to practice: concentrated random vectors

RMT often assumes xi are affine maps Azi + b of zi ∈ Rp with i.i.d. entries.

Concentrated random vectors
For a certain family of functions f : Rp 7→ R, there exists deterministic mf ∈ R

P (|f(x)−mf | > ε) ≤ e−g(ε), for some strictly increasing function g. (5)

O(
√
p)

√
pSp−1 ⊂ Rp

Distribution of x

f1(x)

f2(x)

Observations g(x)

O(1)

O(1)

R

The theory remains valid for concentrated random vectors! But . . . so what?
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From concentrated random vectors to GANs

Generator

Generated
examples

N (0, Ip)

Real
examples

Discriminator

Real?

Fake?

Figure: Illustration of a generative adversarial network (GAN).

Figure: Images samples generated by BigGAN (Brock et al., 2018).
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Take-away message and perspectives

Take-away messages:

loss of relevance of Euclidean distance for large dimensional data

Taylor expansion helps understand kernel spectral clustering and simple
random neural nets behavior

go beyond Gaussian or i.i.d. random vectors with concentrated random vector

Even more question:

what can we do if Taylor expansion is not possible?

universality? influence of higher order moments?

more involved systems, e.g., deep neural nets?

And much more to be done!

neural nets: loss landscape, gradient descent dynamics

problems from convex optimization (often of implicit solution)

more difficult: non-convex optimization problems

transfer learning, active learning, generative networks (GANs)

robust statistics in machine learning

. . .
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universality? influence of higher order moments?

more involved systems, e.g., deep neural nets?

And much more to be done!

neural nets: loss landscape, gradient descent dynamics
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more difficult: non-convex optimization problems

transfer learning, active learning, generative networks (GANs)
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