Random matrix theory and the dynamics of Expectation Propagation

Manfred Opper and Burak Çakmak Al Group TU Berlin

May 2, 2019

Manfred Opper and Burak Çakmak Al Group

Outline

Motivation

- Probabilistic Inference
- 2 Cavity method
- TAP equations for Ising model
- EP algorithm (recurrent network dynamics)
- Analysis of algorithm dynamics
 - Dynamical functional approach
 - 2 Explicit solution
 - Omparison with simulations
- Understanding the results and robustness

Posterior distribution of hidden variables \mathbf{x} given observed data \mathbf{y}

$$p(\mathbf{x}|\mathbf{y}) = rac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{y})}$$

- Marginal probability of the data $p(\mathbf{y}) = \int d\mathbf{x} \ p(\mathbf{x}, \mathbf{y})$ requires high dimensional integrals (or sums).
- Similar problems for the computation of marginals $p_i(x_i|\mathbf{y}) = \int d\mathbf{x}_{\setminus i} \ p(\mathbf{x}|\mathbf{y}),$

Gaussian latent variable models

$$p(\mathbf{x}|\mathbf{y}) = rac{1}{Z} e^{-rac{1}{2}\sum_{ij}x_i \mathcal{K}_{ij}x_j} \prod_{k=1}^N f_k(x_k)$$

Gaussian latent variable models

$$p(\mathbf{x}|\mathbf{y}) = \frac{1}{Z} e^{-\frac{1}{2}\sum_{ij} x_i K_{ij} x_j} \prod_{k=1}^N f_k(x_k)$$

Examples:

- Gaussian process classification: $f_k(x_k) = \text{'sigmoid'}(y_k x_k)$ with $y_k = \pm 1$.
- Compressed sensing: $\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\epsilon}$ with $K \times N$ matrix \mathbf{A} . Sparsity prior $p_0(\mathbf{x}) = \prod_{k=1}^{N} \left((1-\rho)\delta(x_k) + \frac{\rho}{\sqrt{2\pi\sigma^2}}e^{-\frac{x_k^2}{2\sigma^2}} \right)$

...

$$P(\mathbf{x}) \propto \exp\left[\sum_{i < j} x_i J_{ij} x_j + \sum_i h_i x_i
ight]$$

with discrete 'spin variables' $x_i = \pm 1$. Write as Gaussian latent variable model:

$$p(\mathbf{x}) = e^{\sum_{k < l} x_k J_{kl} x_l} \prod_k f_k(x_k)$$

by taking

$$f_k(x) = e^{h_k x} \{ \delta(x-1) + \delta(x+1) \}$$
.

Cavity approach of statistical physics

(Mezard, Parisi, Virasoro 1987)

$$p(\mathbf{x}) \propto \exp\left[\sum_{i < j} x_i J_{ij} x_j\right] \prod_k f_k(x_k)$$

Suppose we are interested in node i

$$p(x_1,\ldots,x_{i-1},\underline{x_i},x_{i+1},\ldots,x_N) \propto f_i(x_i) \exp[x_i \sum_{\substack{j \in \mathcal{N}(i) \\ h_i}} J_{ij}x_j] p_{\setminus i}(\mathbf{x} \setminus i)$$

with $p_{i}(\mathbf{x} \setminus i)$ obtained by deleting node *i*.

Dense graphs & weak dependencies: approximate inference

• The marginal at node i can be derived from the joint distribution $p_i(x,h) \propto f_i(x) \; e^{x(h+h_i)} \; p_{\setminus i}(h)$

with the 'cavity field' distribution

Dense graphs & weak dependencies: approximate inference

• The marginal at node i can be derived from the joint distribution $p_i(x,h) \propto f_i(x) \; e^{x(h+h_i)} \; p_{\setminus i}(h)$

with the 'cavity field' distribution

• Approximate $p_{i}(h)$ by Gaussian $p_{i}(h) \approx \mathcal{N}(a_{i}, V_{i})$. Then

$$p_i(x) = rac{1}{Z_i} f_i(x) \exp\left[a_i x + rac{V_i}{2} x^2
ight]$$

TAP Equations

• Within the Gaussian cavity approximation

$$a_i = \sum_j J_{ij}m_j - V_im_i$$

with $m_j = E[x_j]$.

TAP Equations

• Within the Gaussian cavity approximation

$$a_i = \sum_j J_{ij}m_j - V_im_i$$

with $m_j = E[x_j]$.

Neglecting dependencies

$$V_i = \sum_{jk} J_{ij} J_{ik} \mathsf{VAR}_{\setminus i}(x_i, x_j) \approx \sum_j J_{ij}^2 \mathsf{VAR}(x_j)$$

• TAP equations, D J Thouless, P W Anderson & R J Palmer, 1977)

$$m_i = anh\left(\sum_j J_{ij}m_j - m_i\sum_j J_{ij}^2(1-m_j^2) + h_i
ight)$$

TAP Equations

• Within the Gaussian cavity approximation

$$a_i = \sum_j J_{ij}m_j - V_im_i$$

with $m_j = E[x_j]$.

Neglecting dependencies

$$V_i = \sum_{jk} J_{ij} J_{ik} \mathsf{VAR}_{\setminus i}(x_i, x_j) \approx \sum_j J_{ij}^2 \mathsf{VAR}(x_j)$$

• TAP equations, D J Thouless, P W Anderson & R J Palmer, 1977)

$$m_i = anh\left(\sum_j J_{ij}m_j - m_i\sum_j J_{ij}^2(1-m_j^2) + h_i
ight)$$

believed to be correct (in high temperature phase) for Sherrington-Kirkpatrick model, i.e. random couplings $J_{ij} \sim \mathcal{N}(0, \frac{c}{N})$!

(adaptive) TAP equations:

(MO and O Winther, 2000)

(adaptive) TAP equations:

• Assume cavity field variances V_i depend only on moments $E[x_j]$ and $E[x_i^2]$ of surrounding variables (G Parisi, M Potters, 1995).

(adaptive) TAP equations:

- Assume cavity field variances V_i depend only on moments $E[x_j]$ and $E[x_i^2]$ of surrounding variables (G Parisi, M Potters, 1995).
- Work with an auxiliary Gaussian model where $f_i(x) = e^{-\frac{1}{2}\Lambda_i x^2 + \gamma_i x}$
- Hence, we have for all *i* we must have matching of 2nd moments

$$\mathsf{VAR}[x_i] = \left[\left(\mathbf{\Lambda} - \mathbf{J}
ight)^{-1}
ight]_{ii} = rac{1}{\Lambda_i - V_i}$$

• Leads to set of nonlinear self-consistent equations.

- Efficient approximate inference algorithm (if convergent) introduced by Tom Minka (2001), applicable to discrete and continuous variables (and hybrid). Solves TAP fixed point equations
- Often excellent results for Gaussian latent variable models
- EP applications:

http://research.microsoft.com/en-us/um/people/ minka/papers/ep/roadmap.html

• Disadvantages: Variance updates costly ! Convergence properties unclear.

- Can we simplify EP
- and understand their 'typical' properties
- \bullet for large systems under random matrix assumptions for J ?

- Analysis of message passing algorithm for TAP equations for SK-model (Bolthausen, 2014)
- Approximate message passing algorithm (Donoho, Maleki, Montanari, 2009) for compressed sensing.
- Analysis by statistical mechanics, phase diagrams, achieving of thresholds (Krzakala, Mézard, Sausset, Sun, Zdeborová, 2012)
- Rigorous analysis for matrices with random i.i.d. matrix elements (Bayati, Montanari, 2011, Bayati, Lelarge, Montanari 2015).
- VAMP algorithms by Rangan, Schniter, Fletcher (2016)

Costly variance conditions for 2nd moments

• Given χ_i for i = 1, ..., N: Find diagonal matrix $\mathbf{\Lambda} = \text{diag} (\lambda_1, ..., \lambda_N)$ such that

$$[(\mathbf{\Lambda} - \mathbf{J})^{-1}]_{ii} = \chi_i$$

• Given χ_i for i = 1, ..., N: Find diagonal matrix $\mathbf{\Lambda} = \text{diag} (\lambda_1, ..., \lambda_N)$ such that

$$[(\mathbf{\Lambda} - \mathbf{J})^{-1}]_{ii} = \chi_i$$

- Can we get an approximation to this computation if J is 'random' ?
- Consider matrices of the form J ≐ O^TDO where D is a (deterministic) diagonal matrix and O random orthogonal (rotation).

- Define $\mathbf{\Lambda} \doteq \operatorname{diag}(\frac{1}{\chi_i}) \operatorname{R}_{-\mathbf{J}}(-\frac{1}{N}\sum_i \chi_i) \mathbf{I}$
- Assume $\pmb{\Lambda}$ and $\pmb{\mathsf{K}}$ asympt. free (B Çakmak and MO, ISIT 2018):

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^{N}\left(\left[(\mathbf{\Lambda}-\mathbf{J})^{-1}\right]_{ii}-\chi_{i}\right)^{2}=0$$

For constant external fields $h_i \equiv h$ the approximate fixed point equations for $\mathbf{m} \equiv E[\mathbf{x}]$ are given by (G Paris & M Potters, 1995)

$$\mathbf{m} = \operatorname{Th}(\boldsymbol{\gamma})$$

$$\boldsymbol{\gamma} = \mathbf{Jm} - \mathrm{R}_{\mathbf{J}}(\boldsymbol{\chi})\mathbf{m}$$

$$\boldsymbol{\chi} = \mathbb{E}_{\boldsymbol{u}}[\operatorname{Th}'(\sqrt{(1-\boldsymbol{\chi})\mathrm{R}'_{\mathbf{J}}(\boldsymbol{\chi})}\boldsymbol{u})].$$

where we define

$$Th(x) \doteq tanh(h+x).$$

and $u \sim \mathcal{N}(0, 1)$.

(modified) EP algorithm for Ising model

- Initialise $\gamma(0) = \sqrt{(1-\chi) \mathrm{R}'} \mathbf{u}$ where $\mathbf{u} \sim \mathcal{N}(0, \mathbf{I})$
- Iterate

(modified) EP algorithm for Ising model

• Initialise $\gamma(0) = \sqrt{(1-\chi) \mathrm{R}'} \mathbf{u}$ where $\mathbf{u} \sim \mathcal{N}(0, \mathbf{I})$

• Iterate (similar to a recurrent NN)

$$egin{aligned} & ilde{\gamma}(t) = rac{1}{\chi} ext{Th}(\gamma(t-1)) - \gamma(t-1) \ & ilde{\gamma}(t) = \mathbf{A} ilde{\gamma}(t) \end{aligned}$$

for $t = 1, 2, 3, \ldots$ with the *time-independent* matrix

$$\mathbf{A} \doteq \frac{1}{\chi} (\lambda \mathbf{I} - \mathbf{J})^{-1} - \mathbf{I}.$$

• λ and χ are solutions of the (pre-computed) scalar equations

$$R_{\mathbf{J}}(\chi) = \lambda - \frac{1}{\chi}$$
$$\chi = \mathbb{E}_{u}[Th'(\sqrt{(1-\chi)R'_{\mathbf{J}}(\chi)}u)]$$

Analysis: Generating functional approach

• Consider discrete time dynamics of the form

$$egin{aligned} & ilde{m{\gamma}}(t) = f(m{\gamma}(t-1)) \ & m{\gamma}(t) = m{A} m{ ilde{m{\gamma}}}(t) \end{aligned}$$

Analysis: Generating functional approach

• Consider discrete time dynamics of the form

$$egin{aligned} & ilde{m{\gamma}}(t) = f(m{\gamma}(t-1)) \ & m{\gamma}(t) = m{A} egin{aligned} & ilde{m{\gamma}}(t) \end{aligned}$$

 Marginal dynamics of γ_i(t) derived from generating functional E_A [Z{I(t)}] (Martin, Siggia, Rose, 1973, Sompolinsky & Zippelius, 1981)

$$egin{aligned} &Z\{\mathbf{I}(t)\}\doteq\int\prod_{t=1}^{T}\mathrm{d} ilde{\gamma}(t)\mathrm{d}\gamma(t)~\delta\left(ilde{\gamma}(t)-f(\gamma(t-1))
ight) imes\ imes~\delta\left(\gamma(t)-\mathbf{A} ilde{\gamma}(t)
ight)e^{\mathrm{i}\sum_{i}\gamma_{i}(t)l_{i}(t)} \end{aligned}$$

- Replace Dirac $\delta(\cdot)$ by Fourier representation
- Perform expectation over disorder

$$E_{\mathsf{A}}\left[e^{i\left\{\sum_{t}\hat{\gamma}(t)^{\top}\mathsf{A}\tilde{\gamma}(t)\right\}}\right]$$

- For rotational invariant **A**, the degrees of freedom of resulting non-random model are decoupled by order parameters which become self-averaging for $N \rightarrow \infty$.
- Order parameters introduce couplings in time.
- Exact for $N \to \infty$, number of steps T finite !

$N \rightarrow \infty$: Effective stochastic dynamics with memory

• The resulting effective stochastic process of single variables is given by

$$egin{aligned} & ilde{\gamma}(t) = f(\gamma(t-1)) \ & ilde{\gamma}(t) = \sum_{s < t} \hat{\mathcal{G}}(t,s) ilde{\gamma}(s) + \phi(t) \end{aligned}$$

• $\hat{\mathcal{G}}$ is a $\mathcal{T} imes \mathcal{T}$ matrix defined by the matrix function

$$\hat{\mathcal{G}} \doteq \mathrm{R}_{\mathbf{A}}(\mathcal{G})$$

• \mathcal{G} is a $T \times T$ susceptibility matrix

$$\mathcal{G}(t,s) \doteq \mathbb{E}\left[rac{\partial ilde{\gamma}(t)}{\partial \phi(s)}
ight].$$

The zero-mean Gaussian process $\{\phi(t)\}$ has a covariance matrix given by

$$\mathcal{C}_{\phi} = \sum_{n=1}^{\infty} c_{\mathbf{A},n} \sum_{k=0}^{n-2} \mathcal{G}^{k} \tilde{\mathcal{C}}(\mathcal{G}^{\top})^{n-2-k}$$

where

$$\widetilde{\mathcal{C}}(t,s) \doteq \mathbb{E}[\widetilde{\gamma}(t)\widetilde{\gamma}(s)].$$

and the $c_{A,n}$ are free cumulants defined by the R-transform R_A .

But things actually simplify a bit

For the specific choice of $f(x) \doteq \frac{1}{\chi} Th(x) - x$ and $\mathbf{A} \doteq \frac{1}{\chi} (\lambda \mathbf{I} - \mathbf{J})^{-1} - \mathbf{I}$, we get

But things actually simplify a bit ...

For the specific choice of $f(x) \doteq \frac{1}{\chi} Th(x) - x$ and $\mathbf{A} \doteq \frac{1}{\chi} (\lambda \mathbf{I} - \mathbf{J})^{-1} - \mathbf{I}$, we get

$$egin{aligned} & ilde{\gamma}(t) = f(\gamma(t-1)) \ & ilde{\gamma}(t) = \phi(t) \end{aligned}$$

where the $\phi(t)$ are Gaussian random variables with a covariance computed recursively

$$egin{aligned} \mathcal{C}(t,s) &= rac{g(\mathcal{C}(t-1,s-1))}{1/\mathrm{R}'-\chi^2} \ \mathcal{C}(t,t) &= (1-\chi)\mathrm{R}' \end{aligned}$$

and we have defined

$$g(x) \doteq \mathbb{E}[\operatorname{Th}(\gamma_1)\operatorname{Th}(\gamma_2)] - \chi^2 x$$

• To analyse convergence, study

$$\Delta(t,s) \doteq \lim_{N \to \infty} \frac{1}{N} \mathbb{E}[\|\gamma(t) - \gamma(s)\|^2]$$

• Result: If
$$\frac{1-\eta R'}{1-\chi^2 R'} < 1$$
 (AT line):
Convergence (from random initial conditions) with rate

$$\lim_{t o\infty}rac{1}{t}\ln\Delta(t,\infty)=\ln\left(1-rac{1-\eta\mathrm{R}'}{1-\chi^2\mathrm{R}'}
ight)$$

where $\eta \doteq \mathbb{E}_u[(\mathrm{Th}'(\sqrt{(1-\chi)\mathrm{R}'(\chi)}u))^2].$

Comparison with simulations

 $-10\log_{10}(\mathcal{C}(t,s)-rac{1}{N}\gamma(t)^{ op}\gamma(s))^2$

 $N=10^4$, critical eta=0.35 ('2 layer–Hopfield')

2 realisations and comparison with previously defined algorithm on: 'Single layer Hopfield' ${\bf J}.$

Understanding the results

• Linearisation:

$$rac{\partial \gamma_i(t)}{\partial \gamma_j(t-1)} = (\mathsf{AD}(t-1))_{ij}$$

where $\phi(\mathbf{A}) = \phi(\mathbf{D}(t-1)) = 0$ and $\phi(\ldots) \doteq \lim \frac{1}{N} \operatorname{Tr}(\ldots)$

Understanding the results

• Linearisation:

$$rac{\partial \gamma_i(t)}{\partial \gamma_j(t-1)} = (\mathsf{AD}(t-1))_{ij}$$

where $\phi(\mathbf{A}) = \phi(\mathbf{D}(t-1)) = 0$ and $\phi(\ldots) \doteq \lim \frac{1}{N} \operatorname{Tr}(\ldots)$

• Leads to vanishing of susceptibility by freeness (self averaging)

$$\frac{\partial \gamma_i(t)}{\partial \gamma_i(t')} = \left(\prod_{\tau=t'}^{t-1} \mathbf{AD}(\tau)\right)_{ii} \to 0$$

Understanding the results

• Linearisation:

$$rac{\partial \gamma_i(t)}{\partial \gamma_j(t-1)} = (\mathsf{AD}(t-1))_{ij}$$

where $\phi(\mathbf{A}) = \phi(\mathbf{D}(t-1)) = 0$ and $\phi(\ldots) \doteq \lim \frac{1}{N} \operatorname{Tr}(\ldots)$

• Leads to vanishing of **susceptibility** by freeness (self averaging)

$$\frac{\partial \gamma_i(t)}{\partial \gamma_i(t')} = \left(\prod_{\tau=t'}^{t-1} \mathbf{AD}(\tau)\right)_{ii} \to 0$$

• Small random perturbation of fixed-point (use freeness):

$$\frac{1}{N} \|\delta \boldsymbol{\gamma}(\boldsymbol{\mathcal{T}})\|^2 \simeq C \phi(\mathbf{A}^2)^{\mathcal{T}} \phi(\mathbf{D}^2)^{\mathcal{T}}$$

coincides with asymptotics calculated from dynamical functional method.

• Define non-rotational invariant ensemble

$$\mathbf{J} = eta \mathbf{ ilde{O}}^{ op} \mathbf{D}_{
ho} \mathbf{ ilde{O}} \ \, ext{with} \ \, \mathbf{ ilde{O}} \doteq rac{1}{\sqrt{N}} \mathbf{H}_N \mathbf{Z}.$$

- **Z** and random diagonal with $z_i = \pm 1$ and \mathbf{D}_{ρ} random diagonal $d_i = \pm 1$ with $|\{d_i = 1\}| = \rho N$.
- \mathbf{H}_N is the $N \times N$ Hadamard matrix. $\tilde{\mathbf{O}}$ is an orthogonal matrix with $\tilde{O}_{ij} = \pm \frac{1}{\sqrt{N}}$.

- Generalise to other EP problems
- Model of real data ?
- Learning of matrices

• Details of dynamical functional method:

A theory of solving TAP equations for Ising models with general invariant random matrices, M. Opper, B. Çakmak and O. Winther, Journal of Physics A: Mathematical and Theoretical 49, 114002 (2016).

• Simplifying EP using free probability:

Expectation Propagation for Approximate Inference: Free Probability Framework, B. Çakmak and M. Opper, ISIT (2018).

• Explicit solution to dynamics:

Memory-free dynamics for the TAP equations of Ising models with arbitrary rotation invariant ensembles of random coupling matrices Authors: B. Çakmak and M. Opper, ISIT (2019). arXiv:1901.08583v1

Appendix: Stieltjes-transform and R-transform

Stieltjes-transform

$$G_{\mathbf{A}}(z) \doteq \phi (\mathbf{A} - z\mathbf{I})^{-1}$$

with $\phi(\mathbf{A}) \doteq \lim \frac{1}{N} \operatorname{Tr} \mathbf{A}$.

and its functional inverse

$$z_{\mathbf{A}}(s) \triangleq \mathrm{G}_{\mathbf{A}}^{-1}(s)$$

• The R-transform is defined as

$$R_{\mathbf{A}}(s) \doteq z_{\mathbf{A}}(-s) - 1/s \tag{6}$$

