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Probabilistic Inference

Posterior distribution of hidden variables x given observed data y

p(x|y) =
p(x, y)

p(y)

Marginal probability of the data p(y) =
∫
dx p(x, y) requires high

dimensional integrals (or sums).

Similar problems for the computation of marginals
pi (xi |y) =

∫
dx\i p(x|y),

Manfred Opper and Burak Çakmak AI Group TU Berlin (AI group, TU Berlin) May 2, 2019 3 / 33



Gaussian latent variable models

p(x|y) =
1

Z
e−

1
2

∑
ij xiKijxj

N∏
k=1

fk(xk)

Examples:

Gaussian process classification: fk(xk) = ’sigmoid’ (ykxk) with
yk = ±1.

Compressed sensing: y = Hx + εεε with K × N matrix A.

Sparsity prior p0(x) =
∏N

k=1

(
(1− ρ)δ(xk) + ρ√

2πσ2
e−

x2
k

2σ2

)
. . .
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. . . Ising model

P(x) ∝ exp

∑
i<j

xiJijxj +
∑
i

hixi


with discrete ’spin variables’ xi = ±1.
Write as Gaussian latent variable model:

p(x) = e
∑

k<l xkJklxl
∏
k

fk(xk)

by taking
fk(x) = ehkx {δ(x − 1) + δ(x + 1)} .
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Cavity approach of statistical physics

(Mezard, Parisi, Virasoro 1987)

p(x) ∝ exp

∑
i<j

xiJijxj

∏
k

fk(xk)

Suppose we are interested in node i

p(x1, . . . , xi−1, xi , xi+1, . . . , xN) ∝ fi (xi ) exp[xi
∑

j∈N (i)

Jijxj︸ ︷︷ ︸
hi

] p\i (x\i)

with p\i (x\i) obtained by deleting node i .
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Dense graphs & weak dependencies: approximate inference

The marginal at node i can be derived from the joint distribution

pi (x , h) ∝ fi (x) ex(h+hi ) p\i (h)

with the ’cavity field’ distribution

p\i (h) =

∫
δ

h −
∑
j 6=i

Jijxj

 p\i (x\i )dx\i

Approximate p\i (h) by Gaussian
p\i (h) ≈ N (ai ,Vi ). Then

pi (x) =
1

Zi
fi (x) exp

[
aix +

Vi

2
x2

]
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Manfred Opper and Burak Çakmak AI Group TU Berlin (AI group, TU Berlin) May 2, 2019 7 / 33



TAP Equations

Within the Gaussian cavity approximation

ai =
∑
j

Jijmj − Vimi

with mj = E [xj ].

Neglecting dependencies

Vi =
∑
jk

JijJikVAR\i (xi , xj) ≈
∑
j

J2
ij VAR(xj)

TAP equations, D J Thouless, P W Anderson & R J Palmer, 1977)

mi = tanh

∑
j

Jijmj −mi

∑
j

J2
ij (1−m2

j ) + hi


believed to be correct (in high temperature phase) for
Sherrington–Kirkpatrick model, i.e. random couplings Jij ∼ N (0, c

N ) !

Manfred Opper and Burak Çakmak AI Group TU Berlin (AI group, TU Berlin) May 2, 2019 8 / 33



TAP Equations

Within the Gaussian cavity approximation

ai =
∑
j

Jijmj − Vimi

with mj = E [xj ].

Neglecting dependencies

Vi =
∑
jk

JijJikVAR\i (xi , xj) ≈
∑
j

J2
ij VAR(xj)

TAP equations, D J Thouless, P W Anderson & R J Palmer, 1977)

mi = tanh

∑
j

Jijmj −mi

∑
j

J2
ij (1−m2

j ) + hi



believed to be correct (in high temperature phase) for
Sherrington–Kirkpatrick model, i.e. random couplings Jij ∼ N (0, c

N ) !
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(adaptive) TAP equations:

(MO and O Winther, 2000)

Assume cavity field variances Vi depend only on moments E [xj ] and
E [x2

j ] of surrounding variables (G Parisi, M Potters, 1995) .

Work with an auxiliary Gaussian model where fi (x) = e−
1
2

Λix
2+γix

Hence, we have for all i we must have matching of 2nd moments

VAR[xi ] =
[
(Λ− J)−1

]
ii

=
1

Λi − Vi

Leads to set of nonlinear self–consistent equations.
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Expectation Propagation

Efficient approximate inference algorithm (if convergent) introduced
by Tom Minka (2001), applicable to discrete and continuous variables
(and hybrid). Solves TAP fixed point equations

Often excellent results for Gaussian latent variable models

EP applications:
http://research.microsoft.com/en-us/um/people/

minka/papers/ep/roadmap.html

Disadvantages: Variance updates costly ! Convergence properties
unclear.
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The questions

Can we simplify EP

and understand their ’typical’ properties

for large systems under random matrix assumptions for J ?
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Some related results for AMP algorithms

Analysis of message passing algorithm for TAP equations for
SK–model (Bolthausen, 2014)

Approximate message passing algorithm (Donoho, Maleki, Montanari,
2009) for compressed sensing.

Analysis by statistical mechanics, phase diagrams, achieving of
thresholds (Krzakala, Mézard, Sausset, Sun, Zdeborová, 2012)

Rigorous analysis for matrices with random i.i.d. matrix elements
(Bayati, Montanari, 2011, Bayati, Lelarge, Montanari 2015).

VAMP algorithms by Rangan, Schniter, Fletcher (2016)
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Costly variance conditions for 2nd moments

Given χi for i = 1, . . . ,N: Find diagonal matrix
Λ = diag (λ1, . . . , λN) such that

[(Λ− J)−1]ii = χi

Can we get an approximation to this computation if J is ’random’ ?

Consider matrices of the form J
.

= O>DO where D is a
(deterministic) diagonal matrix and O random orthogonal (rotation).
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Solution under freeness assumption for N →∞

Define Λ
.

= diag( 1
χi

)− R−J

(
− 1

N

∑
i χi

)
I

Assume Λ and K asympt. free (B Çakmak and MO, ISIT 2018):

lim
N→∞

1

N

N∑
i=1

([
(Λ− J)−1

]
ii
− χi

)2
= 0
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Random matrix TAP equations

For constant external fields hi ≡ h the approximate fixed point equations
for m ≡ E [x] are given by (G Paris & M Potters, 1995)

m = Th(γ)

γ = Jm− RJ(χ)m

χ = Eu[Th′(
√

(1− χ)R′J(χ)u)].

where we define
Th(x)

.
= tanh(h + x).

and u ∼ N (0, 1).
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(modified) EP algorithm for Ising model

Initialise γ(0) =
√

(1− χ)R′u where u ∼ N (0, I)

Iterate

(similar to a recurrent NN)

γ̃(t) =
1

χ
Th(γ(t − 1))− γ(t − 1)

γ(t) = Aγ̃(t)

for t = 1, 2, 3, . . . with the time-independent matrix

A
.

=
1

χ
(λI− J)−1 − I.

λ and χ are solutions of the (pre–computed) scalar equations

RJ(χ) = λ− 1

χ

χ = Eu[Th′(
√

(1− χ)R′J(χ)u)]
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Analysis: Generating functional approach

Consider discrete time dynamics of the form

γ̃(t) = f (γ(t − 1))

γ(t) = Aγ̃(t)

Marginal dynamics of γi (t) derived from generating functional
EA [Z{l(t)}]
(Martin, Siggia, Rose, 1973, Sompolinsky & Zippelius, 1981)

Z{l(t)} .=
∫ T∏

t=1

dγ̃(t)dγ(t) δ (γ̃(t)− f (γ(t − 1)))×

× δ (γ(t)− Aγ̃(t)) e i
∑

i γi (t)li (t)
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Replace Dirac δ(·) by Fourier representation

Perform expectation over disorder

EA

[
e i{

∑
t γ̂(t)>Aγ̃(t)}

]
For rotational invariant A, the degrees of freedom of resulting
non–random model are decoupled by order parameters which become
self–averaging for N →∞.

Order parameters introduce couplings in time.

Exact for N →∞, number of steps T finite !
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N →∞: Effective stochastic dynamics with memory

The resulting effective stochastic process of single variables is given by

γ̃(t) = f (γ(t − 1))

γ(t) =
∑
s<t

Ĝ(t, s)γ̃(s) + φ(t)

Ĝ is a T × T matrix defined by the matrix function

Ĝ .
= RA(G)

G is a T × T susceptibility matrix

G(t, s)
.

= E
[
∂γ̃(t)

∂φ(s)

]
.
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The zero-mean Gaussian process {φ(t)} has a covariance matrix given by

Cφ =
∞∑
n=1

cA,n

n−2∑
k=0

Gk C̃(G>)n−2−k

where
C̃(t, s)

.
= E[γ̃(t)γ̃(s)].

and the cA,n are free cumulants defined by the R–transform RA.
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But things actually simplify a bit . . .

For the specific choice of f (x)
.

= 1
χTh(x)− x and A

.
= 1

χ(λI− J)−1 − I,
we get

γ̃(t) = f (γ(t − 1))

γ(t) = φ(t)

where the φ(t) are Gaussian random variables with a covariance computed
recursively

C(t, s) =
g(C(t − 1, s − 1))

1/R′ − χ2

C(t, t) = (1− χ)R′

and we have defined

g(x)
.

= E[Th(γ1)Th(γ2)]− χ2x
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Convergence and Asymptotics T →∞

To analyse convergence, study

∆(t, s)
.

= lim
N→∞

1

N
E[‖γ(t)− γ(s)‖2]

Result: If 1−ηR′

1−χ2R′ < 1 (AT line):

Convergence (from random initial conditions) with rate

lim
t→∞

1

t
ln ∆(t,∞) = ln

(
1− 1− ηR′

1− χ2R′

)
where η

.
= Eu[(Th′(

√
(1− χ)R′(χ)u))2].
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Comparison with simulations
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J = βX>2 X>1 X1X2 (’2 layer–Hopfield’), N = 104.

Manfred Opper and Burak Çakmak AI Group TU Berlin (AI group, TU Berlin) May 2, 2019 23 / 33



1 5 10 15 20 25 30

10
-30

10
-20

10
-10

10
0

N = 104, critical β = 0.35 (’2 layer–Hopfield’)
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2 realisations and comparison with previously defined algorithm on: ’Single
layer Hopfield’ J.
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Understanding the results

Linearisation:
∂γi (t)

∂γj(t − 1)
= (AD(t − 1))ij

where φ(A) = φ(D(t − 1)) = 0 and φ(. . .)
.

= lim 1
N Tr(. . .)

Leads to vanishing of susceptibility by freeness (self averaging)

∂γi (t)

∂γi (t ′)
=

(
t−1∏
τ=t′

AD(τ)

)
ii

→ 0

Small random perturbation of fixed–point (use freeness):

1

N
‖δγ(T )‖2 ' Cφ(A2)Tφ(D2)T

coincides with asymptotics calculated from dynamical functional
method.
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Robustness: Hadamard ensemble

Define non–rotational invariant ensemble

J = βÕ
>

DρÕ with Õ
.

=
1√
N

HNZ.

Z and random diagonal with zi = ±1 and Dρ random diagonal
di = ±1 with |{di = 1}| = ρN.

HN is the N × N Hadamard matrix. Õ is an orthogonal matrix with
Õij = ± 1√

N
.
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βc = 6.8, N = 213.
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Outlook

Generalise to other EP problems

Model of real data ?

Learning of matrices
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A theory of solving TAP equations for Ising models with general
invariant random matrices, M. Opper, B. Çakmak and O. Winther,
Journal of Physics A: Mathematical and Theoretical 49, 114002
(2016).

Simplifying EP using free probability:
Expectation Propagation for Approximate Inference: Free Probability
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Appendix: Stieltjes–transform and R–transform

Stieltjes–transform

GA(z)
.

= φ (A− zI)−1

with φ(A)
.

= lim 1
N TrA.

and its functional inverse

zA(s) , G−1
A (s)

The R–transform is defined as

RA(s)
.

= zA(−s)− 1/s (6)
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Real data

K = 6033,N = 102.
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