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@ Motivation

@ Probabilistic Inference

@ Cavity method

© TAP equations for Ising model

@ EP algorithm (recurrent network dynamics)
@ Analysis of algorithm dynamics

@ Dynamical functional approach
@ Explicit solution
© Comparison with simulations

o Understanding the results and robustness
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Probabilistic Inference

Posterior distribution of hidden variables x given observed data y

_ p(xy)

e Marginal probability of the data p(y) = [ dx p(x,y) requires high
dimensional integrals (or sums).

@ Similar problems for the computation of marginals
pi(xily) = [ dx; p(x[y),
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Gaussian latent variable models

N
I 1 i Xi Kij X
pxly) = &2 2019 I | filx)
k=1

Manfred Opper and Burak Cakmak Al Grouf May 2, 2019 4 /33



Gaussian latent variable models

N
I 1 i Xi Kij X
pxly) = &2 2019 I | filx)
k=1

Examples:

e Gaussian process classification: fx(xx) = 'sigmoid’ (yxxk) with
Yk = +1.
o Compressed sensing: y = Hx + € with K x N matrix A.

x2
Sparsity prior po(x) = HLVZI ((1 — p)o(xk) + \/;T?e_zag)
° ...
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... Ising model

P(x) o exp Z xiJijxj + Z hix;

i<j i
with discrete 'spin variables’ x; = £1.
Write as Gaussian latent variable model:

p(x) — eZk</XkaIXI H fk(Xk)
k

by taking
fi(x) = e {5(x — 1)+ d(x + 1)} .
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Cavity approach of statistical physics

(Mezard, Parisi, Virasoro 1987)

p(x) o exp ZX,‘J,'J'XJ' H fie(xk)

i<j k
Suppose we are interested in node i

(X1, Xim1, X0, Xinds - xw) o fi(xi) explxi Y Jjxil pyi(x\i)
JEN()
h

with p\j(x\/) obtained by deleting node /.
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Dense graphs & weak dependencies: approximate inference

@ The marginal at node i can be derived from the joint distribution
pi(x, h) o fi(x) M) pyi(h)

with the 'cavity field" distribution

JF
¢ oY < o)
—L~~‘~ \ ﬁ(xi)/'lll - "L\~\\\‘ . . ']ij P
P S T
b i . N
4 ‘ ? ’ ‘ ’I
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Dense graphs & weak dependencies: approximate inference

@ The marginal at node i can be derived from the joint distribution
pi(x, h) o fi(x) M) pyi(h)

with the 'cavity field" distribution

i ¢ Lolx i o o)

AN AN
I S N T

TN N

4 ‘ ? ’ .l \’I

e Approximate p\;(h) by Gaussian
pi(h) = N(ai, V;). Then

1 Vi
2
pi(x) = = fi(x) exp |aix + —x

Z; 2
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TAP Equations

@ Within the Gaussian cavity approximation
aj = ZJ,'J'mj — \/,-m,-
J

with m; = E[xj].
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TAP Equations

@ Within the Gaussian cavity approximation
aj = ZJ,'J'mj — \/,-m,-
J

with m; = E[xj].
o Neglecting dependencies

Vi = JiduVAR;(x;, x}) Z  VAR(x;)
Jjk

e TAP equations, D J Thouless, P W Anderson & R J Palmer, 1977)

m; = tanh ZJ’JmJ m,Z:J2 (1- + h;
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TAP Equations

@ Within the Gaussian cavity approximation
aj = ZJ,JmJ — \/,-m;
J

with m; = E[xj].
o Neglecting dependencies
Vi = JiduVAR;(x;, x}) Zﬂ VAR(x
Jjk

e TAP equations, D J Thouless, P W Anderson & R J Palmer, 1977)

m; = tanh ZJ’JmJ m,Z:J2 (1- + h;

believed to be correct (in high temperature phase) for
Sherrington—Kirkpatrick model, i.e. random couplings Jjj ~ N (0, &
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(adaptive) TAP equations:

(MO and O Winther, 2000)

f(x;
o X
! el

PSR I

~~N .7 e

TN T N
- ’ S
l .
’ L]
®
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(adaptive) TAP equations:

(MO and O Winther, 2000)

.“/ ) .fJ(Xj) ¢ ) .gJ(X_])
,L \ 7 L LT
- -~ N /r ij . - ~~\~“‘ /, ij >
B 4

@ Assume cavity field variances V; depend only on moments E[x;] and
E[x?] of surrounding variables (G Parisi, M Potters, 1995) .
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(adaptive) TAP equations:

(MO and O Winther, 2000)

@ Assume cavity field variances V; depend only on moments E[x;] and

E[x?] of surrounding variables (G Parisi, M Potters, 1995) .

. . . CIp2
o Work with an auxiliary Gaussian model where f;(x) = e~ 2/ 7

@ Hence, we have for all i we must have matching of 2nd moments

VAR[Xi] = [(A - J)il] ii - A; i Vi

@ Leads to set of nonlinear self-consistent equations.
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Expectation Propagation

e Efficient approximate inference algorithm (if convergent) introduced
by Tom Minka (2001), applicable to discrete and continuous variables
(and hybrid). Solves TAP fixed point equations

@ Often excellent results for Gaussian latent variable models

o EP applications:
http://research.microsoft.com/en-us/um/people/
minka/papers/ep/roadmap.html

@ Disadvantages: Variance updates costly ! Convergence properties
unclear.
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@ Can we simplify EP
@ and understand their 'typical’ properties

o for large systems under random matrix assumptions for J 7

Manfred Opper and Burak Cakmak Al Grouf May 2, 2019 11 / 33



Some related results for AMP algorithms

@ Analysis of message passing algorithm for TAP equations for
SK-model (Bolthausen, 2014)

@ Approximate message passing algorithm (Donoho, Maleki, Montanari,
2009) for compressed sensing.

@ Analysis by statistical mechanics, phase diagrams, achieving of
thresholds (Krzakala, Mézard, Sausset, Sun, Zdeborova, 2012)

@ Rigorous analysis for matrices with random i.i.d. matrix elements
(Bayati, Montanari, 2011, Bayati, Lelarge, Montanari 2015).

e VAMP algorithms by Rangan, Schniter, Fletcher (2016)
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Costly variance conditions for 2nd moments

@ Given y; for i=1,..., N: Find diagonal matrix
N = diag (A1, ..., A\n) such that

[(N=3)""i = xi
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Costly variance conditions for 2nd moments

@ Given y; for i=1,..., N: Find diagonal matrix
N = diag (A1, ..., A\n) such that

[(N=3)""i = xi

@ Can we get an approximation to this computation if J is 'random’ ?

o Consider matrices of the form J = O"DO where D is a
(deterministic) diagonal matrix and O random orthogonal (rotation).
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Solution under freeness assumption for N — oo

@ Define A = diag(%) —R_y (=42 xi) 1
@ Assume A and K asympt. free (B Cakmak and MO, ISIT 2018):

1 2
dmo 2 ([ =07 =) =0
i=1

n
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Random matrix TAP equations

For constant external fields h; = h the approximate fixed point equations
for m = E[x] are given by (G Paris & M Potters, 1995)

m = Th(y)
v =Jm —Ry(x)m
X = Ey[Th'(1/(1 = x)R}(x)u)].

where we define
Th(x) = tanh(h + x).

and u ~ N(0,1).
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(modified) EP algorithm for Ising model

o Initialise v(0) = /(1 — x)R’u where u ~ N(0, 1)

o lterate
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(modified) EP algorithm for Ising model

e Initialise 7v(0) = /(1 — x)R’u where u ~ N(0, 1)
o lterate (similar to a recurrent NN)
1
() = [ Thiv(t = 1) = 7(t = 1)
v(t) = A5(t)

for t =1,2,3,... with the time-independent matrix

1
A=-N-=-)"1-1
X( )

@ )\ and x are solutions of the (pre-computed) scalar equations

1
Ry(x)=A——
1(x) N

X = Ey[Th'(4/(1 = x)R) (x)u)]
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Analysis: Generating functional approach

o Consider discrete time dynamics of the form
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Analysis: Generating functional approach

o Consider discrete time dynamics of the form

e Marginal dynamics of ;(t) derived from generating functional

Ea [Z{)(t)}]
(Martin, Siggia, Rose, 1973, Sompolinsky & Zippelius, 1981)

Z{1(1)} = /I}w y(£) 6 (5(2) — F(x(t — 1))

X 3 (y(t) — AF(1) ZO
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@ Replace Dirac §(-) by Fourier representation

@ Perform expectation over disorder

Ea [ei{ztﬁ(r)TA-"y(r)}

o For rotational invariant A, the degrees of freedom of resulting
non-random model are decoupled by order parameters which become
self—averaging for N — oc.

@ Order parameters introduce couplings in time.

@ Exact for N — oo, number of steps T finite !
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N — oo: Effective stochastic dynamics with memory

@ The resulting effective stochastic process of single variables is given by

J(t) = f(v(t = 1))
(t) = ZQ s)3(s) + o(t)

o Gisa T x T matrix defined by the matrix function
G =Ra(9)

@ Gisa T x T susceptibility matrix

G(t,s) = E [8'7“)] .

9¢(s)
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The zero-mean Gaussian process {¢(t)} has a covariance matrix given by
00 n—2
C¢ — Z CA.n ngc(gT)n—2—k
n=1 k=0

where y
C(t,s) = E[5(t)3(s)]-

and the cp , are free cumulants defined by the R—transform Ra.
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But things actually simplify a bit . ..

For the specific choice of f(x) = iTh(x) —xand A = %()\I -1,
we get
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But things actually simplify a bit . ..

For the specific choice of f(x) = iTh(x) —xand A = %()\I -1,
we get

A(t) = f(r(t = 1))

where the ¢(t) are Gaussian random variables with a covariance computed
recursively

_g(C(t—1,5-1))
C(t’ S) - ]./R/ _ X2
C(t,t) = (1 - x)R
and we have defined

g(x) = E[Th(y1)Th(y2)] — x*x
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Convergence and Asymptotics T — oo

@ To analyse convergence, study
A(t,s) = lim lIE[|| (t) = ()%
’ N NI—>oo N v v

@ Result: If 1 "QFE{, 1 (AT line):

Convergence (from random initial conditions) with rate

1 1—nR/

where 1 = E, (T (T — )R () u))?]
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Comparison with simulations

—101ogyo(C(t, 5) — x(t) " (5))?

Iteration number ¢

1 2 3 4 5 6 7 8 9 10
Iteration number s

J = Xy X{ X1 X, ("2 layer-Hopfield'), N = 10*.

Manfred Opper and Burak Cakmak Al Grouf May 2, 2019 23 /33



10° ]
@ = -1

=== exp(tIn i)
10710 8=029
—

~_ =027
1020 s ]

10730 B =015

1 5 10 15 20 25 30

Iteration number ¢

N = 10%, critical 3 = 0.35 (2 layer—Hopfield")
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. : : 1
10 — %@ ==
— % llo@®) - plt = 1)|?
—— %@ =y -1
51 B
10 —— %Mo) = p(t = 1)|?
——-exp(tIn iy f)
__'exp(tln:ussm)
10710 ¢
10718 ¢
1020
1 10 20 30 40 50 60

Tteration number ¢

2 realisations and comparison with previously defined algorithm on: 'Single
layer Hopfield' J.
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Understanding the results

@ Linearisation:
d7i(t)
Ot —1)

where ¢(A) = ¢(D(t — 1)) =0 and ¢(...) = lim & Tr(...)

= (AD(t — 1));
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Understanding the results

@ Linearisation:
7i(t)
Ot —1)
where ¢(A) = ¢(D(t — 1)) =0 and ¢(...) = lim & Tr(...)
@ Leads to vanishing of susceptibility by freeness (self averaging)

) B t—1
i)~ (H AD(T)) ,-,- =0

= (AD(t — 1));
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Understanding the results

@ Linearisation:
i(t)
Ot —1)
where ¢(A) = ¢(D(t — 1)) =0 and ¢(...) = lim & Tr(...)
@ Leads to vanishing of susceptibility by freeness (self averaging)

) B t—1
i)~ (H AD(T)) ,-,- =0

= (AD(t — 1));

@ Small random perturbation of fixed—point (use freeness):

ST = Co(A%)T6(D?)T

coincides with asymptotics calculated from dynamical functional
method.
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Robustness: Hadamard ensemble

@ Define non—rotational invariant ensemble

1
VN
@ Z and random diagonal with z; = £1 and D, random diagonal

di = £1 with [{d; = 1}| = pN.
° I:IN is the N x N Hadamard matrix. O is an orthogonal matrix with

Lo 1
05 =+

J=p80'D,0 with 0= ——HyZ.
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—101ogy(C(t, 5) — %(t)¥(s))?

—_

Iteration number ¢

o © 0o N o 0o »~ W N

—_

1 2 3 4 5 6 7 8 9 10
Iteration number s
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@) = -1
100 - eXp(t lnﬂmf) 1
B=6
107® ]
10710 .
g=4
1071° .
p=2
10720 \ 1
1 10 20 30 40 50 60 70 80 90 100

Be = 6.8, N =213,

Iteration number ¢
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Outlook

@ Generalise to other EP problems
@ Model of real data ?

@ Learning of matrices
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Publications

o Details of dynamical functional method:
A theory of solving TAP equations for Ising models with general
invariant random matrices, M. Opper, B. Cakmak and O. Winther,
Journal of Physics A: Mathematical and Theoretical 49, 114002
(2016).

e Simplifying EP using free probability:
Expectation Propagation for Approximate Inference: Free Probability
Framework, B. Cakmak and M. Opper, ISIT (2018).

o Explicit solution to dynamics:
Memory-free dynamics for the TAP equations of Ising models with
arbitrary rotation invariant ensembles of random coupling matrices
Authors: B. Cakmak and M. Opper, ISIT (2019).
arXiv:1901.08583v1
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Appendix: Stieltjes—transform and R—transform

o Stieltjes—transform

with ¢(A) = lim 4 TrA.

@ and its functional inverse

@ The R—transform is defined as

Ra(s) = za(—s) —1/s (6)
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Real data

0 -0
01 02 03 04 05 06 07 08 0 50 100 150 200 250 300 04 02 0 02 04 06
(A + XTALX) ™) b =1,...,6033 (X(Aw +XTA1:X) X)), n=1,...,102 ()res k= 1,...,6033

K = 6033, N = 102.
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