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Abstract

We study a matrix valued, stochastic process. More precisely, for Hermitian, Wishart, chiral

and non-Hermitian type matrices, we let the matrix elements perform a Brownian motion in

the space of complex numbers. In the first three cases, our investigations are focused on the

average characteristic polynomial (ACP), which encapsulates many of the matrix properties.

For each matrix type, we derive a complex variable, partial differential equation that it satisfies

for arbitrary initial conditions and size of the matrix. This means that a logarithmic derivative

(or otherwise, the Cole-Hopf transform) of the ACP, fulfills an associated non-linear partial

differential equation akin to the Burgers equation. The role of viscosity in this analogy is played

by a parameter inversely proportional to the size of the matrix. In the large matrix size limit,

the latter equation can be solved with the method of characteristics. In the process, we uncover

caustics and shocks. If they coincide, they are associated with the eigenvalue probability density

edges. This way, the local, universal, asymptotic behavior of the eigenvalues at the borders of

the spectrum can be seen as a precursor of a shock formation. We exploit the obtained partial

differential equations to uncover the microscopic properties of the ACP in the vicinity of the

shocks. This yields Airy, Pearcey, Bessel and Bessoid special functions.

Motivated by recent results and insights in the study of the Durhuus-Olesen transition in Yang-

Mills theory, we propose an effective chiral matrix model for the spontaneous breakdown of

chiral symmetry. Making use of the above described results, under a universality conjecture, we

find the behavior of the fixed topological charge partition function in the vicinity of the transition

point. There are two distinct scenarios for which it can be checked numerically. One of them

could be studied simultaneously with the Durhuus-Olesen transition, thus potentially shining

light on the relation between deconfinement and chiral symmetry breaking transitions.

In the case of the non-Hermitian matrix, the ACP has to be extended to depend on an extra

variable, which in the end of calculations is taken to zero. Surprisingly, the Brownian motion of

the matrix elements is associated with dynamics in this auxiliary space. Instead of one complex

Burgers equation, we obtain two coupled non-linear partial differential equations that govern the

behavior of both the eigenvalues and the eigenvectors. The method allows to recover the spectral

density and a certain correlator of left and right eigenvectors in the large matrix size limit.

http://uj.edu.pl
http://www.fais.uj.edu.pl/
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Chapter 1

Introduction

1.1 The ubiquity of random matrices

Established 3200 years ago by the Olmec, "the mother culture" of Mesoamerica, the city of

Cuernavaca is the capital of the state Morelos in Mexico. With its approximately 3.5 hundred

thousand inhabitants, it boasts a rather unique bus transportation system. In Cuernavaca there

are namely no bus schedules, the bus drivers own their vehicles and compete between each other

to maximize their cash income. They do that by acquiring, at checkpoints along a given line,

the information on the time the previous bus has passed. By adjusting their traveling speed,

they use it to prevent bus clustering and therefore to render their services to as many people as

possible. As shown by Milan Krbalek and Petr Seba [1], the statistical behavior of the vehicles

is described by random matrices. In particular, the distribution of the time intervals separating

the arrivals of the subsequent buses is remarkably well matched by the probability distribution

of the spacings between eigenvalues of the so called Gaussian Unitary random matrices.

The above example of random matrices emerging in the description of a physical system, how-

ever peculiar, is not a solitary one. The story of Random Matrix Theory (RMT) starts with John

Wishart, a Scottish mathematician and agricultural statistician, who in a paper dating back to

1928 [2], defined, what we call now, the Wishart random matrix ensemble, a matrix general-

ization of the χ-squared distribution. Almost thirty years later, Eugene Wigner, in an attempt

to describe the statistics of energy levels of excited, heavy nuclei, introduced the ensemble of

symmetric matrices. As the bus drivers of Cuernavaca keep a distance from each other trough

an intricate interaction, so do the energy levels of a heavy nucleus are separated in a manner

1
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originating from the complicated nature of the strong forces acting between their constituents.

Subsequently, the interest in RMT experienced a many fold growth both in the community of

physicists and mathematicians. Nowadays, random matrices are applied in the area of two di-

mensional quantum gravity [3] and in the statistical description of the ribonucleic acid folding

[4]. They share statistical properties with the Dirac operator of Euclidean Quantum Chromody-

namics [5] and classical chaotic systems like the Sinai billiard [6]. The application range from

map enumeration [7] to financial portfolio diversification [8] and telecommunication [9]. This

is just a modest list of examples - for a broad, modern view see [10].

To give a more specific feeling of how huge is the scope of applications of RMT, let us briefly

describe three additional cases which show its relevance in mathematics, physics and applied,

interdisciplinary sciences. The first example comes from number theory. The famous Riemann

hypothesis states that all the complex zeroes s of the Riemann Zeta function reside on the critical

line of Re(s) = 1/2. There exists a considerable body of numerical evidence [11], that their

hight above the real line is locally distributed (far above the real axis) in the same way (trough

the matching of correlation functions) as the eigenvalues of the Gaussian and circular unitary

ensemble in the large matrix size limit. Moreover, the moments of the Riemann Zeta function

(averaged over the critical line) are conjectured to coincide (in a slightly different regime) with

the moments of characteristic polynomials of the classical unitary ensembles [12].

Successful experimental studies of statistical properties of phase transitions of out of equilibrium

systems are hard to come by, one of them, however, provides us with the second example.

Only recently, it has been shown, that a certain phase transition in liquid crystals falls to the

universality class of the 1+1 dimensional Kardar-Parisi-Zhang equation [13]. In this experiment,

a thin container is filled with a nematic liquid crystal. When a high AC voltage is applied to

the sample, the molecules fluctuate violently forming a turbulent phase. Subsequently, a phase

transition is triggered by a laser pulse. The new phase state, differing from the first in the density

of topological defects, spreads across the sample. The two phases are bordered by a fluctuating

interface. RMT enters, as the relative hight of the interface is shown to be distributed in the

same way as the largest eigenvalue of a random matrix. Depending on the initial condition, a

circularly or a line shaped pulse, it namely gives the Tracy-Widom probability density of the

GUE and the GOE accordingly.

Let us finish this subsection with a recent interdisciplinary application of RMT. The search for

a vaccine against the HIV virus has been long yet unsuccessful. There is a type of vaccines that
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provoke the patients immune system to attack cells that display on their surface viral proteins

with specific amino-acids. This is however inefficient, as the HIV rapidly mutates, and the new

virus strains that aren’t targeted, quickly dominate the population. Recently it was however pro-

posed that one could identify groups of amino-acids that rarely mutate simultaneously [14]. The

idea is that such groups are responsible for vital functions of the virus and if such a correlated

mutation happens, the virus is rendered significantly less fit. In order to be able to exploit this,

one constructs an associated correlation matrix - it is however subject to noise and hindered by

the finiteness of the sample. Fortunately, random matrices come to help. Because we know the

spectrum of a correlation matrix build out of a finite sample of uncorrelated random variables,

the mutation correlation matrix can be “cleaned" of most of the unwanted residua. By apply-

ing this method, a group of amino-acids was identified that, if collectively mutated, leaves the

virus unable to assemble its protective membrane - the so called capsid. Clinical trials of RMT

enabled vaccines are soon to be under way.

1.2 The power of random matrices

What is then the reason for this ubiquity? Where does the strength of RMT lie? On the surface,

the concept of a random matrix is a very simple one. We take a matrix and fill it with random

numbers. Nonetheless, there is a great abundance associated with this simple setting. First, we

may restrict ourselves to the real or natural numbers, but we can also fill our matrices with com-

plex numbers or quaternions. Moreover, one can impose a variety of conditions on the structure

of the matrix. We distinguish in particular the aforementioned matrices of Freeman Dyson’s

three-fold way [15–17], invariant with respect of the orthogonal, unitary and symplectic trans-

formations, yielding symmetric, Hermitian or symplectic matrices filled respectively with real

numbers, complex numbers and quaternions. A block structure can be also assigned, like in

the case of chiral matrices. Additional prominent examples are the random unitary matrices of

the circular ensembles, the random Toeplitz matrices or the random transfer matrices. Finally

we may decide on the probability distribution. We obtain Gaussian matrices, for example, if the

elements are identically, independently and normally distributed. The random Wigner-Lévy ma-

trices [18] arise, on the other hand, when the elements respect accordingly the Lévy probability

distribution. In many cases, and in particular for the examples given above, the choice within

those characteristics will be determined by the problem we want to describe and will have con-

sequence for the mathematical properties of our random matrix model. Therefore, the first part
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of the answer to the question posed, is that random matrices have both conceptual simplicity

and, in the same time, a rich structure.

The second, deeper, reason has two facets. One is called the microscopic universality. Roughly

speaking, locally and under certain assumptions, the statistical properties of the eigenvalues

don’t depend, in the large matrix size limit, on particular probability distributions chosen for its

elements. (What they do depend on however, are, for example, the symmetries satisfied by the

random matrix). This is why describing the energy levels spacing of Wigners heavy nuclei with

the matrix ensemble worked - their behavior is in the particular random matrix universality class.

The second facet is the macroscopic universality. It tells us that some macroscopic properties

can also be universal. The first example of this dates back to the works of Wigner - no matter

what probability function will generate the elements of a symmetric matrix, as long as the entries

are independent, identically distributed and the moments of that distribution are bounded, the

large matrix size spectral density is a semicircle. These kinds of results allow, for instance, (up

to a certain point) to apply RMT in procedures such as mentioned in the example with the HIV

vaccine.

Finally, random matrices can be seen as non-commuting generalization of random variables of

the classical probability theory. There exist, for instance, central limit theorems for random

matrices. The basic one states that adding Hermitian matrices filled with identically distributed,

centered variables with a finite variance, results with a matrix whose spectral density approaches

the Wigner semicircle distribution (an equivalent of the Gaussian in the world of matrices). In

this broader sense, they are examples of objects described by the so called Free Random Variable

Theory [19] and are subject, for instance, to addition and multiplication laws [20, 21]. Following

this line of thought, one may see the different uses of the Wishart random matrices (like the

above mentioned vaccine design) as the precursors of matrix statistics. As it seems we are in

the advent of the era of Big Data, RMT has a chance to become an indispensable tool both in

science and commerce.

1.3 Basics of Random Matrix Theory

Let us now start to be more speciffic. In this introductory part of the thesis, we will focus

our attention on the Gaussian Unitary Ensemble (GUE) of Hermitian matrices. The aim is to

supply the reader with a context for the results described in the main part of the work, and this
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particular ensemble provides a framework in which it can be done in the simplest, clearest and

most relevant way. We will give results without the proofs, as one can find many pedagogically

written lectures on the subject (see for example [22]) as well as vast handbooks, among which

the RMT classic by M. L. Mehta [23].

Consider a Hermitian matrix H of size N×N. Let xi j and yi j be random real numbers distributed

according to a centered Gaussian probability density. The matrix elements are Hii ≡ xii on the

diagonal whereas elsewhere Hi j ≡ (xi j+iyi j)/
√

2, with the condition that xi j = x ji and yi j = −y ji.

The resulting probability measure reads:

dP(H) = C1

∏
1≤i< j≤N

dxi jdyi j

N∏
k=1

dxkk exp

− N∑
i=1

x2
ii −

N∑
i< j

(x2
i j + y2

i j)

 ≡ dH exp
[
−Tr

(
H2

)]
, (1.1)

where C1 is some constant responsible for the normalization of the probability distribution.

In Random Matrix Theory one studies the spectral properties of the ensembles. H can be diag-

onalized by a unitary transformation U through H = UΛU† where Λ = diag(λ1, . . . , λN) is the

matrix containing the real and increasingly ordered eigenvalues of H. (1.1) can now be written

as:

dP(H) = C2

N∏
k=1

dλk exp

− N∑
i=1

λ2
i

 ∏
1≤i< j≤N

|λ j − λk|
β. (1.2)

C2 encompasses the normalization constant C1 and the volume of the unitary group which was

integrated out. Here, that is for complex numbers filling the matrix, β = 2. Dealing with real

numbers or quaternions would result in β = 1 and β = 4 respectively. The last product term is the

Vandermonde determinant arising from the Jacobian of the change of variables. The partition

function takes the form

Z = C2

N∏
i=1

∫ +∞

−∞

dλi exp [−S ({λi})], (1.3)

with the action

S ({λi}) =

N∑
i=1

λ2
i −

∑
1≤ j,k≤N

ln|λ j − λk| (1.4)

revealing that the eigenvalues interact with one another. They can be seen as charged particles

repelling each other with the two dimensional Coulomb potential and confined to the real line.
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1.3.1 Orthogonal and characteristic polynomials

Let P(λ1, . . . , λN) ≡ C2
∏N

i=1 exp [−S ({λi})]. In general one is interested in the following corre-

lation functions

ρ̃n(λ1, . . . , λn) ≡
N!

(N − n)!

∫
P(λ1, . . . , λN)dλn+1 . . . dλN (1.5)

which encompass the statistical properties of the spectrum of random matrices. The method

of orthogonal polynomials allows us to express them in terms of the Random Matrix Kernel

(RMK)

KN(λ, λ′) ≡ e−
1
2 [Q(λ)+Q(λ′)]

N−1∑
i=1

pi(λ)pi(λ′) (1.6)

according to

ρ̃n(λ1, . . . , λn) = det
[
KN(λi, λ j)

]
1≤i, j≤n

. (1.7)

pi(x)’s are polynomials ortonormal with respect to the measure e−Q(x) that is they satisfy:

∫
e−Q(x) pi(x)p j(x)dx = δi j. (1.8)

In the case of GUE, they are the Hermite polynomials and the measure is Gaussian.

Finally let us define two objects that will be central to this thesis - the averaged characteristic

polynomial (ACP)

πN(z) ≡ 〈det(z − H)〉 (1.9)

and the averaged inverse characteristic polynomial (AICP)

θN(z) ≡ θ0
N(1/z) ≡

〈
1

det(z − H)

〉
(1.10)

(the latter with an implicit regularization). The averaging 〈. . .〉 is done over the matrix ensemble.

We additionally set p̃i(x) = pi(x)/ci, where ci is such that the new, rescaled orthogonal polyno-

mials are monic, the coefficient of their highest order term is namely equal to unity. The ACP

and the AICP can be cast in terms of p̃i(x)’s. In case of the considered ensemble the relations
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are simple. For the ACP we have πN(z) = p̃N(z), whereas for the AICP it is given by the Cauchy

transform

θN(z) =
1

c2
N−1

∫
e−Q(s)ds

z − s
p̃N−1(s). (1.11)

In general, a random matrix ensemble doesn’t have to have a known, associated set of orthogonal

polynomials forming the kernel. One can however always define the ACPs and the AICPs.

Although not always in the straightforward manner as in the case of the GUE, these two objects

can be in many cases used to reconstruct the spectral correlation functions and therefore capture

many of the statistical properties of random matrices.

1.3.2 The Green’s function and the spectrum

We proceed by defining the resolvent or otherwise called Green’s function

G(z) ≡
1
N

〈
Tr

1
z − H

〉
, (1.12)

with z, a complex number. It can be written as the Stieltjes transform of the eigenvalue density

measure, namely

G(z) =

∫
ρ(λ)
z − λ

dλ, (1.13)

where ρ(λ) = ρ̃1(λ)/N. The Sokhotski-Plemelj theorem tells us that a complex-valued function

f (x), continuous on the real line, satisfies

lim
ε→0

∫
f (x)

x ± iε
dx = −

∫
f (x)

x
dx ∓ iπ f (0), (1.14)

where −
∫

denotes Cauchy’s principal value of the integral. In the large N limit, when the eigen-

values form a continuous interval on the real line, these imply the following relation between

the spectral density function and the resolvent

ρ(λ) = −
1
π

lim
ε→0

Im [G(z = λ + iε)] (1.15)
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In the case of the GUE ensemble

G(z) =
1
2

(
z −

√
z2 − 4

)
, (1.16)

which gives, by (1.15), the prescription for the famous Wigner semicircle

ρ(λ) =
1

2π

√
4 − λ2. (1.17)

We additionally gain a representation of the Green’s function

G(z) = πH
[
ρ(z)

]
− iπρ(z), (1.18)

where

H
[
f (x)

]
≡

1
π
−

∫
f (y)

x − y
dy (1.19)

is the Hilbert transform. It will be useful in the proceeding chapters.

Finally, note that a cumulant expansion of the ACP reveals that, in the limit of an infinite size of

the matrix, we have

G(z) = lim
N→∞

1
N
∂z ln πN(z). (1.20)

1.3.3 Dyson’s Coulomb gas analogy

There is another way of constructing random matrices - not through stationary distributions,

but with stochastic process. This is Dyson’s approach from his seminal paper [24] - it will be

central to this thesis. Here, we use our normalization conventions from the previous subsection

and define the evolution of matrix entries xi j and yi j trough Langevin equations

δxi j(t) = b(1)
i j (t) − Axi j(t)δt (1.21)

δyi j(t) = b(2)
i j (t) − Ayi j(t)δt for i , j (1.22)

where b(1)
i j (t), b(2)

i j (t) are real numbers defined by two independent Brownian walks:

b(c)
i j (t) = ζ(c)

i j (t) δt, (1.23)
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with

〈
ζ(c)

i j (t)
〉

= 0 (1.24)

and

〈
ζ(c)

i j (t)ζ(c′)
kl (t′)

〉
= δcc′δikδ jlδ(t − t′). (1.25)

A sets the scale for the harmonic potential confining the random motion of the matrix elements.

We will now leave the time dependence of the matrix entries and the eigenvalues implicit. As a

result we obtain

〈
δHi j

〉
= −

A
√

2

(
xi j + iyi j

)
δt for i , j, (1.26)

〈δHii〉 = −Axiiδt, (1.27)〈(
δHi j

)2
〉

= δt. (1.28)

The eigenvalue perturbation theory tells us then, that

〈δλi〉 = −Aλiδt +
∑
i, j

δt
λ j − λi

〈
(δλi)2

〉
= δt (1.29)

Finally, this means that the time dependent joint eigenvalue probability density function (P ≡

P(λ1, . . . , λN , t)) satisfies the following Smoluchowski-Fokker-Planck (SFP) equation:

∂P
∂t

=
1
2

N∑
i=1

∂2P
∂λ2

i

−

N∑
i=1

∂

∂λi


Aλi −

∑
j,i

1
λ j − λi

 P

 . (1.30)

The stationarry solution of this equation reads

P(λ1, . . . , λN) = C3 exp

−A
N∑

i=1

λ2
i

 ∏
1≤i< j≤N

|λ j − λk|
2 (1.31)

(with C3 another normalization constant) reproducing the result from the static matrix approach.

The preceding prescription allowed for many developments - in particular random matrices were

connected to the Calogero-Sutherland quantum many body systems [25, 26]. Note however,

that this is not the only way of incorporating dynamics in to the world of random matrices. One

can achieve this by introducing a parameter dependence like for example in the Hatano-Nelson
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model [27], by constructing a chain of matrices [28] or by explicitly adding/multiplying matrices

[29]. Here, we will nonetheless follow the footsteps of Dyson.

1.4 Rationale and outline of this thesis

The research presented here is driven by two premises. The first stems from the (already men-

tioned) view of RMT as an extension of probability theory. In the latter, a prominent role is

played by stochastic processes. The concept of time evolving random variables was introduced

in the end of the 19th century and quickly brought fruits by enhancing the understanding of the

physical world through the works of Einstein and Smoluchowski. With this in mind, we believe

that matrix valued stochastic processes have great potential and we intend to forward the devel-

opment of this area. The second is an emerging belief in the prominent role of the characteristic

polynomial. Like the orthogonal polynomials, they are strongly connected to the kernel and the

correlation functions, yet, contrary to their cousins, they are explicitly defined in terms of the

matrices.

As we will hereafter show, even though we study the classical ensembles in their simplest form,

and the stochastic process governing the evolution of the matrix elements is a basic random walk,

our approach turns out to be quite fruitful. The averaged characteristic polynomials (ACPs) and

the averaged inverse characteristic polynomials (AICPs) of the diffusing matrices are namely

shown to satisfy certain partial differential equations (exact for any size of the matrix). These are

solved for different, generic initial conditions. The form of the solutions allows for an analysis

of their asymptotic behavior at critical points exhibiting microscopic universality. Moreover the

logarithmic derivative of the ACP satisfies nonlinear partial differential equations which in the

large matrix size limit are solved with the method o characteristics. The spectrum can be hence

recovered trough the relation between the ACP and the Green’s function. Finally this picture is

supplemented with an analogy to the optical catastrophes [30].

The rest of the thesis has the following structure. We start, in chapter 2, with the Hermitian

matrices performing a Brownian walk. We namely consider the model from subsection 1.3.3 but

without the restoring force (A = 0). We show how an inviscid complex Burgers equation for the

Green’s function arises from the SFP equation. We solve the former with the method of complex

characteristics for two different, generic initial conditions. Next, we turn to the ACP and AICP

and derive the PDEs they fulfill and show the integral forms of their solutions. Subsequently, we
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demonstrate how the scaling of eigenvalues at the critical points we are interested in is extracted

from the previous results. Finally we unravel their universal microscopic behavior at those

points, in particular the Airy and the Pearcey functions. We conclude the chapter by mentioning

the analogies between the results and some catastrophes in optics.

Chapter 3 is structured in the same way as the one proceeding it, yet it treats the ensemble of

Wishart matrices. We focus however solely on the ACP. We employ two different methods to

extract its microscopic behavior associated with the spectral edge. This time, when the two

shocks collide, one obtains a Bessoid function. Surprisingly, it also has an analog exploited in

optics.

In chapter 4 we briefly describe the way chiral random matrices arise in the context of sponta-

neous chiral symmetry breaking (SχSB) in Quantum Chromodynamics (QCD) and discuss the

arguments for enriching the associated description with a dynamic parameter. Subsequently we

translate some of the results obtained in the case of the Wishart ensemble, to the language of

chiral matrices. This way, we obtain critical behavior of the effective, random matrix partition

function of Euclidean QCD at the vicinity of the moment of chiral symmetry breaking. We con-

jecture that QCD falls into its universality class when the SχSB occurs at a critical temperature,

for an infinite volume of space and at a critical volume, for infinite number of colors.

We show in chapter 5, that our approach can be generalized to the study of non-Hermitian ma-

trices. Instead of the the usual ACP, we use a slightly more complicated object which hides

information both about the complex spectrum and the associated eigenvectors. A complex ma-

trix with no symmetries and with the elements performing a random walk is considered. We

derive a PDE governing its evolution and we carry out calculations for the simplest initial con-

dition, to recover some known results connected to the Ginibre ensemble. Wrapping up the

chapter, we deliberate on the power of this novel method of treating non-Hermitian ensembles.

The thesis is concluded in chapter 6. There, we propose directions of further research that, we

believe, should be undertaken in the context of the presented findings.

Finally, in the three appendices, we give some useful properties of the Hilbert transform (A),

demonstrate, in case of the GUE, how the RMK can be reconstructed out of the ACPs and

AICPs for any initial condition (B), and show a straightforward proof of the ACP for the Wishart

matrix, evolving from a trivial initial condition, being equal to a time dependent monic Laguerre

polynomial (C).





Chapter 2

Diffusion of complex Hermitian

matrices

2.1 Introduction

As already announced, this chapter is devoted to the study of Hermitian matrices whose entries

perform Brownian motion in the space of complex numbers. In the two proceeding sections we

rederive the results obtained in [31]. The first one takes us from the Langevin and SFP equations

to the Burgers equation for the large matrix size limit Green’s function. In the second, we give

solutions of the former for two generic initial conditions and discuss the characteristics, caustics

and shocks arising. The rest of the chapter is dedicated to the results we obtained in [32].

First we derive the partial differential equations driving the evolution of the ACP and the AICP.

These provide us with integral representations of the objects they govern. Section 2.5 is devoted

to their local, asymptotic behavior in the vicinity of the caustics (which coalesce with shocks

of the Burgers equation and the spectral edges). We explain the connection between the saddle

points of the functions exponentiated in the integral representations and the characteristic lines.

Finally, we perform the associated steepest descent analysis to obtain different representatives

of the families of Airy and Pearcey functions. In the conclusions, we mention how theses results

are connected to known properties of random matrix ensembles with so called sources and to

objects from optical catastrophe theory.

13
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The character of this chapter is intended to be pedagogical. The techniques developed and

explained here, will be used to derive analogical results for the diffusing Wishart ensemble in

the 3rd chapter.

2.2 From the SFP equation to the Burgers equation

We start our considerations with Dyson’s Coulomb gas picture form section 1.3.3. By setting

A = 0 and thus neglecting the restoring force, we leave the eigenvalues to spread across the

real line. This will not change the essence of the results, however it shall make the calculations

simpler. The SFP equation reads

∂P
∂t

=
1
2

N∑
i=1

∂2P
∂λ2

i

+
∑

i, j(,i)

∂

∂λi

∑ 1
λ j − λi

 P

 . (2.1)

It is easily solved - for example, if initially all the eigenvalues are equal to zero, then the solution

is

P = C0 t−N2/2
∏
i< j

(λi − λ j)2 e−
∑

k
λ2

k
2t , (2.2)

with C0 a normalization constant.

The aim of this subsection is to derive the associated partial differential equation for the Green’s

function in the large N limit. We will follow [31] in our calculations. First, the objects from sub-

section 1.3 are re-casted (in an obvious way) to incorporate the time dependance. The averaged

density of eigenvalues is now defined by:

ρ̃ (λ, t) =

∫ N∏
k=1

dλkP (λ1, · · · , λN , t)
N∑

l=1

δ (λ − λl) =

〈 N∑
l=1

δ (λ − λl)
〉
. (2.3)

One defines similarly the ‘two-particle’ density

ρ̃ (λ, µ, t) =

〈 N∑
l=1

∑
j(,l)

δ (λ − λl) δ
(
µ − λ j

)〉
. (2.4)

The two are normalized as follows

∫
dλ ρ̃(λ, t) = N,

∫
dλdµ ρ̃(λ, µ, t) = N(N − 1), (2.5)
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that is in the same way as ρ̃1 and ρ̃2 respectively.

Now, to obtain a PDE containing the above spectral correlation functions, we multiply (2.1) with

a sum of delta functions and integrate it over all the eigenvalues. The results is

∂ρ̃(λ, t)
∂t

=

∫ 1
2

N∑
i=1

∂2P
∂λ2

i

+
∑

i, j(,i)

∂

∂λi

(
P

λ j − λi

) N∑
l=1

δ (λ − λl)
N∏

k=1

dλk. (2.6)

The next step is to perform an integration by parts and shift the variables with respect to which

we differentiate to λ:

∂ρ̃(λ, t)
∂t

=
1
2
∂2

∂λ2

∫
P

N∑
l=1

δ (λ − λl)
N∏

k=1

dλk −
∂

∂λ

∫
P

∑
i, j(,i)

1
λ − λ j

δ (λ − λi)
N∏

k=1

dλk. (2.7)

Observe furthermore that:

∑
j(,i)

1
λ − λ j

= −

∫
1

λ − µ

∑
j(,i)

δ
(
λ j − µ

)
dµ. (2.8)

We make use of the above and the definition in (2.4) to obtain:

∂ρ̃(λ, t)
∂t

=
1
2
∂2ρ̃(λ, t)
∂λ2 −

∂

∂λ
−

∫
ρ̃(λ, µ, t)
λ − µ

dµ. (2.9)

The equation contains both the one-point and two-point eigenvalue density function. We are

however interested in its large N limit. Therefore, we write ρ̃ (λ, µ) = ρ̃ (λ) ρ̃ (µ) + ρ̃con (λ, µ),

expecting that ρ̃con (λ, µ) is N times smaller than ρ̃ (λ) ρ̃ (µ). W make this explicit when switching

to the correlation functions normalized to 1, that is setting

ρ̃ (λ) = Nρ (λ) and ρ̃con (λ, µ) = Nρcon (λ, µ) . (2.10)

Simultaneously, we rescale the time by introducing τ = Nt. This yields

∂ρ(λ, τ)
∂τ

+
∂

∂λ

[
ρ(λ, τ)−

∫
ρ(µ, τ)
λ − µ

dµ
]

=
1

2N
∂2ρ(λ, τ)
∂λ2 −

1
N
−

∫
ρcon(λ, µ, τ)

λ − µ
dµ, (2.11)

which in the large matrix size limit forms a closed, integro-differential equation for the proba-

bility density of eigenvalues:

∂ρ(λ, τ)
∂τ

+ π
∂

∂λ

{
ρ(λ, τ)H

[
ρ(λ, τ)

]}
= 0. (2.12)
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One can take the Hilbert transform of this equation and obtain

∂

∂τ
H

[
ρ(λ, τ)

]
+ πH

[
ρ(λ, τ)

] ∂

∂λ
H

[
ρ(λ, τ)

]
− πρ(λ, τ)

∂

∂λ
ρ(λ, τ) = 0. (2.13)

For the Hilbert transform identities consult appendix A. Combining the last two together and

taking advantage of (1.18), gives

∂τG(z, τ) + G(z, τ)∂zG(z, τ) = 0, (2.14)

the sought for PDE describing the evolution of the Green’s function. It is a complex, inviscid

Burgers equation [33].

2.3 Solving the Burgers equation with the method of characteristics

To solve (2.14), we will now employ the method of characteristics, a way to reduce a PDE to a set

of ordinary differential equations (ODEs). Although this example is particularly simple, let us go

through the procedure in a pedagogical manner. We start by defining a surface G(z, z̄, τ)−G = 0

in a 4 dimensional space (z, z̄, τ,G). G(z, z̄, τ) is the solution of our Burgers equation. A vector

normal to this surface is
(
∂G
∂z ,

∂G
∂z̄ ,

∂G
∂τ ,−1

)
. The actual PDE provides us with an orthogonal vector

(G, 0, 1, 0), lying in the plane tangent to the surface of the solution at any given point. Now, we

introduce a curve in the space of (z, z̄, τ,G) that is parametrized by s. We wish to define a set of

those curves, such that they reconstruct the solution of the Burgers equation. This means that

they need to be embedded on the surface G(z, z̄, τ) −G = 0 and therefore be tangent to it at each

point. To fulfil this condition it suffices that the components of the tangent vector describe the

variation of the parameter s with respect to the change of the associated coordinate. In the case

of the complex inviscid equation, we obtain the following set of ODEs:

dz
ds

= G,
dz̄
ds

= 0,
dτ
ds

= 1 and
dG
ds

= 0. (2.15)

Let the initial condition for the Green’s function be G0(z) ≡ G(z, τ = 0). We see that the

solution will stay analytical, that is it won’t depend on z̄. We additionally define z0 such that

z(s = 0) = z0. Moreover, let τ(s = 0) = 0. On behalf of (2.15), this means that τ = s, G(z0) = G
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and

z = z0 + τG0(z0). (2.16)

These define the sought for curves, which are called characteristics. As we can see, they can

be seen as curves in the space of (z, z̄, τ) that are parametrized by z0. In the case of the Burgers

equation, the characteristics are straight lines along which the solution is constant.

The final result is an implicit equation for G(z, τ) which is solved under the condition, stemming

from (1.12), that in the limit of |z| → ∞, the Green’s function has to vanish. Curves which the

characteristic lines are tangent to, are called envelopes or caustics. Their τ dependent position,

xc, is given by the condition

0 =
dz
dz0

∣∣∣∣∣
z0=z0c

= 1 + τG′0(z0c). (2.17)

Along them, the mapping between z and z0 ceases to be one to one, which makes the character-

istic method loose its validity.

2.3.1 Specific initial conditions

We shall now consider two specific initial conditions. The first one is defined by H(τ = 0) = 0

which means that all the eigenvalues are zero at the beginning. The associated Green’s function

is G0 = 1
z and therefore G(z, τ) = 1

z0
. The resulting implicit equation reads:

G =
1

z − τG
. (2.18)

Its solution

G(z, τ) =
1
2τ

(
z ±

√
z2 − 4τ

)
, (2.19)

yields a Wigner semicircle for the eigenvalue probability density function

ρ(λ, τ) =
1

2πτ

√
4τ − λ2. (2.20)

The edges of the branch cut and hence of the spectrum move according to zc = 2
√
τ. Notice

that they coincide with the points on the complex plane associated with the breakdown of the
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method of characteristics (obtained from (2.16) and (2.17)). Additionally, they constitute the

positions of the shocks, curves in the (z, τ) space along which the characteristic lines have to be

cut to ensure unambiguity of the solution for G(z, τ). The spectrum is depicted on the left plot

of Fig.2.1. The associated characteristic lines can be seen in Fig. 2.2 (left graph), where we

show only those that evolve along the surface of real z. The complex characteristics remain as

such throughout their evolution and terminate, when they reach the branch cut. There are neither

shocks nor caustics outside of the Im(z) = 0 plane.

0
Λ

ΡHΛL
HHΤ=0L=0

Τ=0.5

Τ=0.75

Τ=1

Τ=1.5

-1 1
Λ

ΡHΛL
HHΤ=0L=diagH-1...,1...L

Τ=0.25

Τ=0.5

Τ=1

Τ=1.5

Figure 2.1: The above figure depicts the time evolution of the large N spectral density of the
evolving matrices for two scenarios that differ in the imposed initial condition. The parameter

a was set to one.

The second initial condition we address is H(τ = 0) = diag(−a..., a...), a matrix starting with

N/2 eigenvalues equal to a and N/2 equal to −a (we let N be even). It corresponds to G0 =

1
2(z−a) + 1

2(z+a) in the infinite matrix size limit. The resulting implicit equation is

τ2G3 − 2zτG2 +
(
z − a2 + τ

)
G − z = 0. (2.21)

Here, the eigenvalues form two intervals that spread across the real line and meet at 0 for τ =

τc = a2 (right plot on figure 2.1). The caustics meet accordingly. If we would let the complex

characteristics cross the branch cut, they would form two caustics evolving in the complex part

of the space and starting at their real precursors meet. They would however no longer coincide

with the edges of the spectrum. This is depicted in the right plot of figure 2.2. For a deep

analysis of structures formed by characteristic curves, caustics and shocks, in case of other

initial conditions, however not in the context of random matrices, see [34].
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HHΤ=0L=0

ImHzL

ReHzL

Τ

HHΤ=0L=diagH-1,...,1,...L

ImHzL

ReHzL

Τ

1

1

-1

Figure 2.2: The thin blue lines are characteristics that remain real throughout their temporal
evolution. They terminate at the bold green lines which are caustics and shocks simultane-
ously. The dotted, green lines are the caustics that would be formed by the strictly complex

characteristics (not depicted here) if they didn’t terminate on the branch cut.

2.4 Evolution of the ACP and AICP

Recently, it was shown [31], that the monic polynomials associated with a random walk of Her-

mitian matrices from section 2.2, orthogonal with respect to the measure (2.2), fulfill a complex

diffusion equation. In that simple case, for which initially the matrix has only zero eigenvalues,

they are the Hermite polynomials and are equal to the averaged characteristic polynomial. The

proof was based on the properties specific to the former. Here, we will take a different route

and start from the ACP itself. We will show, that it follows the diffusion equation no matter

what the initial condition is. Additionally, as it was noticed in [31], the Cauchy transform of the

orthogonal polynomial also is driven by a complex diffusion equation, however with a different

diffusion constant. Accordingly, we will show that the AICP fulfills such an equation, again,

irrespectively of the initial conditions.

Consider the A = 0 random walk of the matrix entries from section 1.3.3. Let P(xi j, τ) P(yi j, τ)

be the probability that the off diagonal matrix entry Hi j will change from its initial state to
1√
2
(xi j + iyi j) after time τ. Analogically, P(xii, τ) is the probability of the diagonal entry Hii

becoming equal to xii at τ. The evolution of these functions is thus governed by the following

diffusion equations:

∂

∂τ
P(xi j, τ) =

1
2N

∂2

∂x2
i j

P(xi j, τ),

∂

∂τ
P(yi j, τ) =

1
2N

∂2

∂y2
i j

P(yi j, τ), i , j. (2.22)
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Note , that the t = τ/N time rescaling was taken into account. The joint probability density

function

P(x, y, τ) ≡
∏

k

P(xkk, τ)
∏
i< j

P(xi j, τ)P(yi j, τ), (2.23)

satisfies the following Smoluchowski-Fokker-Planck equation

∂τP(x, y, τ) = A(x, y)P(x, y, τ), (2.24)

where

A(x, y) =
1

2N

∑
k

∂2

∂x2
kk

+
1

2N

∑
i< j

 ∂2

∂x2
i j

+
∂2

∂y2
i j

 . (2.25)

Instead of diagonalising the matrix and somehow treating the Vandermonde determinant in our

calculations, we will stay on the level of the matrix elements. The next subsection will focus on

the ACP, whereas the one proceeding it, on the AICP.

2.4.1 Evolution of the averaged characteristic polynomial

First, recall that a determinant of a matrix (B) can be cast in terms of an integral over Grassmann

variables

det A =

∫ ∏
i, j

dηidη j exp
(
ηiBi jη j

)
, (2.26)

in this case ηi’s and η̄i’s. The characteristic polynomial, averaged with respect to (2.23) and

denoted by πN(z, τ), can be then written as

πN(z, t) =

∫
D[η̄, η, x, y]P(x, y, τ) exp

[
η̄i

(
zδi j − Hi j

)
η j

]
, (2.27)

where the joint integration measure is defined by

D[η̄, η, x, y] ≡
∏
i, j

dηidη j

∏
k

dxkk

∏
n<m

dxnmdynm. (2.28)
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One may exploit the Hermicity of H to write the argument of the exponent in the following form

Tg(η̄, η, x, y, z) ≡
∑

r

η̄r (z − xrr) ηr −
1
√

2

∑
n<m

[
xnm (η̄nηm − ηnη̄m) + iynm (η̄nηm + ηnη̄m)

]
.

The only time dependent factor is P(x, y, τ). We can therefore differentiate Eq. (2.27) with

respect to τ, and using (2.25) end up with the operator A(x, y) acting on the joint probability

density function. The next step is to integrate the equation by parts with respect to the matrix

entries. One obtains:

∂τπN(z, τ) =

∫
D[η̄, η, x, y]P(x, y, τ)A(x, y) exp

[
Tg(η̄, η, x, y, z)

]
. (2.29)

Now, we differentiate with respect to xi j and yi j (acting with A(x, y)) and exploit some simple

properties of Grassmann variables, which gives

∂τπN(z, τ) = −
1
N

∫
D[η̄, η, x, y]P(x, y, τ)

∑
i< j

η̄iηiη̄ jη j exp
[
Tg(η̄, η, x, y, z)

]
. (2.30)

Multiplied by −2N, the last expression is equal to the double differentiation with respect to z of

(2.27). This means that the ACP fulfills the following complex diffusion equation:

∂τπN(z, t) = −
1

2N
∂zzπN(z, τ). (2.31)

We use this fact to extract a convenient, integral form of the ACP, namely

πN(z, τ) = C τ−1/2
∫ ∞

−∞

exp
(
−N

(q − iz)2

2τ

)
πN(−iq, τ = 0) dq. (2.32)

The fact that it satissfies (2.31) can be verified by a direct calculation. The negative diffusion

coefficient is not a problem because z is complex. The initial condition (in general πN(z, τ =

0) =
∏

i(z − λi0), where the λi0’s are real eigenvalues we start the evolution with) is recovered

by using the steepest descent method in the τ → 0 limit. Additionally, this allows to determine

the constant term C. The associated saddle point is u0 = iz. The final result reads

πN(z, τ) =

√
N

2πτ

∫ ∞

−∞

exp
(
−N

(q − iz)2

2τ

)
πN(−iq, τ = 0) dq. (2.33)
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2.4.2 Evolution of the averaged inverse characteristic polynomial

The derivation of the analogical equation for the AICP is slightly different, because the inverse

of the determinant is expressed with an integral over complex variables, in this case by

1
detA

=

∫ ∏
i, j

dξidξ j exp
(
−ξiAi jξ j

)
. (2.34)

The formula for the AICP can be therefore written in the following way

θN(z, τ) =

∫
D[ξ̄, ξ, x, y]P(x, y, τ) exp

[
ξ̄i

(
Hi j − zδi j

)
ξ j

]
, (2.35)

where, again, the proper notation for the joint integration measure was introduced. The rest of

the derivation is structurally the same. First we differentiate with respect to τ

∂τθN(z, τ) =

∫
D[ξ̄, ξ, x, y]P(x, y, τ)A(x, y) exp

[
Tc(ξ̄, ξ, x, y)

]
, (2.36)

with

Tc(ξ̄, ξ, x, y, z) ≡
∑

r

ξ̄r (xrr − z) ξr +
1
√

2

∑
n<m

[
xnm

(
ξ̄nξm + ξnξ̄m

)
+ iynm

(
ξ̄nξm − ξnξ̄m

)]
.

As before, we have used (2.25), the Hermicity of H and we have performed integrations by

parts. Differentiating with respect to the matrix elements gives:

∂τθN(z, τ) =
1
N

∫
D[ξ̄, ξ, x, y]P(x, y, τ)

∑
i< j

ξ̄iξiξ̄ jξ j +
1
2

∑
k

ξ̄kξkξ̄kξk

 exp
[
Tc(ξ̄, ξ, x, y, z)

]
,

(2.37)

which, multiplied by 2N, matches the double differentiation of Eq. (2.35) with respect to z. The

final result is

∂τθN(z, t) =
1

2N
∂zzθN(z, t). (2.38)

Notice that, the only thing changed with respect to equation (2.31) is the sign of the diffusion

constant. The solution to the PDE reads

θN(z, τ) = C

∫
Γ

exp
(
−N

(q − z)2

2τ

)
θN(q, τ = 0) dq. (2.39)
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Here, the contour of integration is slightly more complicated than the one for the ACP, because it

has to avoid the poles of the initial condition. The fact that the solution must recreate θN(z, τ = 0)

at τ → 0 allows us to decide what it should be. If Im(z) > 0 the associated steepest descent

analysis works for Γ = Γ+, a contour parallel and slightly above the real axis - the contour

is shifted upward to go trough the pole q0 = z. In the opposite case of Im(z) < 0, Γ− is a

proper choice, a contour parallel to the real axis but situated below it. All other possibilities are

excluded by the requirement of consistency with the initial problem. This means that a contour

switching complex half-planes in between possibly multiple poles is forbidden. The calculation

yields C =

√
N

2πτ .

2.4.3 From the ACP to the Green’s function

Let us additionally define fN(z, τ) ≡ 1
N∂z ln πN(z, τ). This is the famous Cole-Hopf transform

first used to show that the viscous, real Burgers equation is integrable by transforming it into a

diffusion equation [35]. By applying it to the ACP, through (2.31) we obtain

∂τ fN(z, τ) + fN(z, τ)∂z fN(z, τ) = −
1

2N
∂2

z fN(z, τ), (2.40)

in which the “spatial" variable z is complex and the role of viscosity is played by −1/N, a

negative number. Notice that, in the large N limit, by (1.20), we recover the inviscid Burgers

equation for the Green’s function from section 2.2. This is another crosscheck of our results.

Additionally, (2.40) was first obtained in [31], however only for the simplest initial condition.

2.5 Universal microscopic scaling of the ACP and AICP

The classical viscous Burgers equation describes the velocity of a pressureless and incompress-

ible fluid. Without the viscosity, sudden jumps in the velocity field (the shocks) can emerge. If

the viscosity term (here positive) is present however, such transitions are smoothened. A some-

how similar phenomena can be observed in the averaged spectrum of a Hermitian matrix under

consideration. If its size is finite, the probability to find an eigenvalue quickly but smoothly ap-

proaches zero when we look for it further and further from the center of and along the real axis.

Contrary, when N is infinite, the spectral edge is sharp. When studying simple models of fluid
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flow, it is often important to understand the dynamics of a system with a small but non zero vis-

cosity (the kinematical viscosity of water at 20oC is approximately equal to 10−6 m2

s ). Similarly

in RMT, one is interested in the local behavior of the eigenvalues when their number approaches

infinity (note that our viscosity is proportional to 1/N). This is because, as mentioned in the in-

troductory part of this thesis, then the properties are universal. Our partial differential equations

live in the complex space and the viscosity can be negative. Nevertheless, as the spectral edges

in our model are associated with shocks, the described analogies drive our interest in the large

asymptotic behavior of the ACP and AICP in their vicinity.

There are two (linked) ways to approach this problem, as we are equipped in two equations, one

for the ACP (or for the AICP), and one for its logarithmic derivative. Taking advantage of the

latter, one can expand fN around the positions of the spectral edges. After a proper rescaling of

the new variables (which will be described later) and suitable transformations of the function, in

the large N limit, partial differential equations are obtained. Their solutions describe the sought

for asymptotic behavior of the ACP and the AICP. This is how the Airy functions were recovered

in [31]. The other option is to rely on the diffusion-like equations and their solution cast in terms

of integrals. This is what we will do in this chapter. We shall use the fact, that, irrespective of

the initial condition, the integral representations of the ACP and AICP take the form

∫
Γ

eN F(p,z,τ)dp, (2.41)

which is well suited for a steepest descent analysis in the large N limit [36]. First however, we

need to understand qualitatively and quantitatively what is meant by the ‘vicinity’ of the edges.

This is the subject of the next subsection.

2.5.1 The behavior of eigenvalues

The spectral edge properties of the ACP and the AICP we want to study, depend on the behavior

of the eigenvalues in the vicinity of the associated shock. One needs to decide on the length

of the interval occupied by eigenvalues needed to be taken into account. Recall, that we take

the limit of the size of the matrix and therefore the number of the eigenvalues going to infinity.

If this interval size was constant in N, the number of eigenvalues inside would grow and soon

most of them would not “feel" the fact that they are close to edge. Those eigenvalues would

dominate the sought for behavior. The same happens if the length of the interval shrinks slower

then the inverse average number of eigenvalues inside. If on the contrary it would shrink faster,
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than after taking the limit it would become empty. Hence the universal properties close to the

edge are captured by variables within the distance of the order of the average spacing of the

eigenvalues. This information, as we shall see below, can be obtained from the Green’s function

and the behavior of the characteristic lines that are used to derive it. To extract it, one expands

G around z0c [37]:

G0(z0) = G0(z0c) + (z0 − z0c)G′0(z0c) +
1
2

(z0 − z0c)2G′′0 (z0c) +
1
6

(z0 − z0c)3G′′′0 (z0c) + . . . .(2.42)

Irrespective of the initial condition G0(z0) = (z − z0)/τ (see (2.16)) and therefore we have

G′0(z0c) = −1/τ. This gives

z − zc =
τ

k!
(z0 − z0c)kG(k)

0 (z0c) + . . . , (2.43)

where k in G(k)
0 (z0c) indicates the power of the first after (G′0), non-vanishing derivative of G0

taken in z0c, for a given critical point. This leads to:

G(z, τ) ' G0(z0c) + G′0(z0c)

 k!(z − zc)

τG(k)
0 (z0c)

1/k

. (2.44)

Now, let N∆ be the average number of eigenvalues located at an interval ∆. We thus have

N∆ ∼ N
∫ zc+∆

zc

(z − zc)1/kdz ∼ N∆1+1/k, (2.45)

which for fixed N∆, e.g. N∆ = 1, implies that the average eigenvalue spacing at those points is

proportional to N−k/(1+k). We see that this strongly depends on the initial condition and the fact

that we are looking at the particular point of a caustic.

The same information can be obtained by considering the large N limit of (2.41). The saddle

point condition is ∂pF(p, z, τ)|p=pi = 0). Therefore, when we look at the saddle points pi of the

function in the exponent of this integral, we see that they are governed by the same equation that

defines the characteristic lines in terms of their labels z0, namely (2.16). To see the equivalence

(in the sense of the form of the equations) for the ACP, write down the F function explicitly

F(p, z, τ) =
1
N

ln
[
π0(−ip)

]
−

1
2τ

(p − iz)2, (2.46)
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differentiate it with respect to −ipi and identify z0 with −ipi. As for the AICP, we have

F(p, z, τ) =
1
N

ln
[
θ0(p)

]
−

1
2τ

(p − z)2 (2.47)

(notice that G0(p) = − 1
N∂pln

[
θ0(p)

]
), with z0 identified as pi.

Consider now the labels of the characteristic lines as described through (2.16). Everywhere, but

at the curve of the caustic this equation has (two, three or, in general, more, depending on the

initial condition) distinct solutions for z0. The fact that, in figure 2.2, at any given point, outside

of the non-zero value of the spectral density, we see only one characteristic, is because they were

cut at the shock (which here happens to follow the caustic whenever it remains real). At the

caustic, a single solution is present. Characteristics are tangent to the caustic so, geometrically,

this is understood through the fact that at a given point of any curve that is not a straight line,

there exist only one tangent line to that curve. When we go back to the saddle points, which

contrary to the labels z0 can bee seen as having trajectories across the (z, τ) space, we see now

that they must merge at the caustics (pi’ corresponding to the single solutions for z0). Therefore,

the behavior of the ACP and the AICP at the spectral edges, when studied with their integral

representation, will be determined by the merging of the saddle points - two on a distinct caustic

and three when two caustics meet forming a cusp. Additionally, this is the reason why the RMT

special functions obtained in the next subsections have their analogs in the theory of optical

catastrophes.

Let us now see how, in practice, the information about the proper scale for the vicinity of the

edge can be obtained form the function F. As, close to the shock, the saddle points are merging,

the variable s, measuring the distance from zc, has to scale with the size of the matrix in such a

way that, when N grows to infinity, the value of the integrand is not concentrated at separate pi’s

but in the single pc. In the large matrix size limit, we nonetheless want to control the distance we

are from zc (and thus the distance between saddle points), hence the rescaled s mustn’t vanish.

This is equivalent to requiring that for such an s, the distance between the saddle points pi is

of the order of the width of the Gaussian functions arising from expanding F(p) around the

respective pi’s in exp[NF(p)] [22]. Resulting, for any i, j and n , i, in a condition:

|pi − pn| ∼
[
NF′′(p j)

]−1/2
, (2.48)

that gives (as we shall see below, in explicit calculations) the relevant order of magnitude of s
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that is Nα, with α thus defined. We therefore set z = zc + s = zc + Nαη, with η of order one.

Note that α and k are related through α(1 + k) = −k. A particular value of α subsequently sets

the scale for the distance probed by the deviation from pc. The condition |pi − pc| ∼ Nβ defines

the substitution p = pc + Nβt. The connection between the saddle points and characteristic lines

allows us to relate β and α through k. We see that near the critical point |pi−pc| ∼ |z0−z0c|. Using

equation (2.43), we thus obtain β = α/k = −(1 + α), which can be used as a consistency check.

In the second example of subsection 2.3, the merging of the saddle points happens in a particular

critical time τc and there exists a time scale, of the order of Nγ, for which, asymptotically, pi’s are

sufficiently close to each other in the manner explained above.. This exponent is calculated by

expanding the condition for the merging of saddle points around the critical value τ = τc + Nγκ.

Now, we are equipped with the tools and understanding required to uncover, with the method

of steepest descent, the large matrix size behavior of the average characteristic polynomial and

the average inverse characteristic polynomials around the point associated with the caustic and

around the point where two caustics meet. The former case can be studied with the H(τ = 0) = 0

initial condition, whereas for the latter we will use H(τ = 0) = diag(−a..., a...).

2.5.2 Soft, Airy scaling
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Figure 2.3: In the two above graphs, the blue color gradient portrays the value of ReF(p)
(growing with the brightness), whereas the dashed lines depict the curves of constant ImF(p).
The left figure is plotted for the ACP, with p ≡ q, the right one for the AICP, with p ≡ u. The
initial condition is H(τ = 0) = 0 and time τ is fixed to 1 for both. Dashed bold curves indicate
contours of integration suitable for the saddle point analysis, for the AICP, the black and white

lines identifie the contours Γ+ and Γ− respectively.



Chapter 2. Diffusion of complex Hermitian matrices 28

As announced, first we choose the H(τ = 0) = 0 initial condition. This translates to πN(z, τ =

0) = zN as all the eigenvalues are equal to zero at the beginning of the evolution. First, the

spectral density is a Dirac delta function situated at 0, when the time starts to flow it spreads,

symmetrically around zero, on the real axis, as shown in Fig. 2.1. The integral representation of

the ACP takes the form

πN(z, τ) = (−i)N

√
N

2πτ

∫ ∞

−∞

qN exp
(
−

N
2τ

(q − iz)2
)

dq. (2.49)

Note that this is just a scaled Hermite polynomial, in this form, partly studied in [31]. Let

us proceed to the steepest descent analysis by noting that in this case: F = ln q − 1
2τ (q − iz)2

Therefore, the saddle point condition (2.55) reads τ = q(q − iz). Its solutions and hence the

saddle points are q± = 1
2

(
iz ±
√

4τ − z2
)
. As we have learned in the previous subsection, their

merging, at qc = i
√
τ, signifies the caustic and hence the position of the spectral edge, which is

therefore given by z = ±2
√
τ. Let us concentrate on the positive, right edge.

The integration contour is shifted so that it goes through qc and deformed for Im(F) to be con-

stant. This guarantees the steepest descent of Re(F). With those conditions, the new Γ is unique.

We depict it on the left plot of figure 2.3 with a bold curve. In order to expand F around the

shock position, we proceed to the change of variables. Either by looking, in sight of (2.44), at

the derivatives of G0 at z0c or through (2.48), we obtain α = −2
3 . Therefore η = (z − 2

√
τ)N2/3

and, moreover β = − 1
3 and the change of variables in the integral is given by t = (q − i

√
τ)N1/3.

Finally, we expand the logarithm and take the large matrix size limit. One obtains

πN
(
z = 2

√
τ + ηN−2/3, τ

)
≈ τN/2 N1/6

√
2π

exp
(

N
2

+
ηN1/3
√
τ

)
Ai

(
η
√
τ

)
, (2.50)

where

Ai(x) =

∫
Γ0

dt exp
(
it3

3
+ itx

)
(2.51)

is the well-known Airy function. The contour Γ0 is formed by the rays −∞ · e5iπ/6 and∞ · eiπ/6.

It took its form through the N → ∞ limit.
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We now turn to the AICP, in case of which an analogical analysis is performed. The H(τ = 0) =

0 initial condition takes the form θN(z, τ = 0) = z−N and (2.39) reads

θN(z, τ) =

√
N

2πτ

∫
Γ±

u−N exp
(
−N

(u − z)2

2τ

)
du. (2.52)

Recall that we work with two distinct contours Γ+ and Γ− depending on whether Im(z) > 0 or

Im(z) < 0. Again we look at the right edge. The saddle points merge at uc =
√
τ. The contours

is shifted and transformed accordingly. The new one is depicted on the right plot of figure 2.3).

The same rules (as for the ACP) for variable scalings apply here and we have η = (z−2
√
τ)N2/3

and it = (u −
√
τ)N1/3 As before the logarithm needs to be expanded under the assumption that

N is large. When we take the limit,

θN
(
z = 2

√
τ + ηN−2/3, τ

)
≈ iτ−N/2 N1/6

√
2π

exp
(
−

N
2
−
ηN1/3
√
τ

)
Ai

(
eiφ± η
√
τ

)
, (2.53)

the asymptotic behavior in terms of the Airy function, yet with its argument rotated by φ+ =

−2π/3, for Imz > 0, and by φ− = 2π/3, for Imz < 0, is obtained. This agrees with older results

treating static matrices [38].

2.5.3 Pearcey scaling
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Figure 2.4: The same content as figure 2.3, except the initial condition is H(τ = 0) =

diag(1, . . . , 1,−1, . . . ,−1).

As we are interested in what happens when the two shocks meet, we employ a different initial

condition, that is the second one of those introduced in section 2.3. We have πN(z, τ = 0) =
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(z2 − a2)N/2, with N even. Now, at the beginning of the evolution, the eigenvalues are localized

at points ±a on the real axis. The ACP takes the form

πN(z, τ) = iN

√
N

2πτ

∫ +∞

−∞

dq exp
[
−

N
2τ

(q − iz)2 +
N
2

log(a2 + q2)
]
. (2.54)

Therefore, the saddle point equation reads

q
q2 + a2 −

q − iz
τ

= 0. (2.55)

We know now, that the point at which the caustics meet is associated with three saddle points

merging. They do that for zc = 0 at τc = a2 and the critical position of the single saddle point is

qc = 0. See left plot in figure 2.4 for the contour, which, in this case, doesn’t have to be shifted

or deformed. With techniques broadly described above we determine the proper rescaling of the

variables. We set q = tN−1/4, τ = a2 + κN−1/2 and z = ηN−3/4. As usual, the logarithm in the

exponent is expanded while the large N limit is taken. The result is

πN
(
z = ηN−3/4, τ ≈ a2 + κN−1/2

)
≈

N1/4
√

2π
(ia)NP

(
κ

2a2 ,
η

a

)
, (2.56)

where P denotes the Pearcey integral by defined by:

P(x, y) =

∫ ∞

−∞

dt exp
(
−

t4

4
+ xt2 + ity

)
. (2.57)

Finally, we turn to the AICP. θN(z, τ = 0) = (z2 − a2)−N/2 and:

θN(z, τ) =

√
N

2πτ

∫
Γ±

du (u2 − a2)−N/2 exp
(
−

N
2τ

(u − z)2
)
, (2.58)

where Γ± denotes contours circling the poles ui = ±a from above (Γ+, Imz > 0) or from below

(Γ−, Imz < 0). We proceed with the steepest descent analysis. Again, the requirement for Im(F)

to be constant along the new contours gives us curves depicted in the right plot of in figure 2.4.

The saddle point expansion is parametrized by τ = a2 + κN−1/2, z = ηN−3/4 and u = eiπ/4tN−1/4,

which yields

θN(z = ηN−3/4, τ ≈ a2 + κN−1/2) ≈
N1/4
√

2π
(ia)−N

∫
Γ̃±

dt exp
(
−t4/4 −

iκ
2a2 t2 + it

e−iπ/4η

a

)
.

(2.59)
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We therefore obtain a Pearcey type integral along contours Γ̃+, Γ̃− depending on the choice of

sign of the imaginary part of z. The former is defined by rays with phases π/2 and 0, whereas

the later starts at −∞ and after reaching zero forms a ray along a phase −π/2.

This concludes the analysis of the large matrix size microscopic behavior of the ACP and the

AICP.

2.6 Chapter summary and conclusions

In this chapter, we have seen that the resolvent associated with a Hermitian matrix filled with

entries undergoing independent Brownian motion processes on the complex plane, satisfies a

complex nonlinear PDE known as the inviscid Burgers equation. The method of characteris-

tics, employed to obtain its solution for two distinct and generic initial conditions, allows us

to identify the spectral edges with shocks and caustics. Subsequently we show that this can be

seen as a consequence of the behavior of the average characteristic polynomial (or equivalently

the average inverse characteristic polynomial), which satisfies a complex diffusion equation. In

particular, its logarithmic derivative (the Cole-Hopf transform), which, in the large matrix size

limit, becomes the Green’s function, evolves according to a viscid complex Burgers equation, in

which the viscosity is inversely proportional to N. This picture allows us to connect the local,

universal properties of the spectral edges to the formation of caustics, shocks and finally the

coalescence of saddle points in the obtained integral representations of the ACP and the AICP.

Finally, we identified the behavior of these function in the vicinity of the shocks. When dealing

with a single caustic, two saddle points merge, and one recovers the family of the Airy func-

tions. When two caustics coalesce in a cusp, three saddle points merge and we find the Pearcey

type functions. This is not surprising. First, our setting can be translated to a model of a so-

called random Hermitian matrix with an external source, which exhibits this kind of behavior

(details are given in appendix B). Second, the structures formed by caustics, the singularities

of parametrization, are classified by catastrophe theory [30]. On the plane, these are the fold

and cusp catastrophes, associated precisely with the Airy and Pearcey function. A well known

example of these phenomena are optical catastrophes. In this case, the role of the “viscosity" is

played by the wavelength, which is taken to 0 in the limit of geometric optics. The associated

scaling exponents α are the same [37, 39].





Chapter 3

Diffusion in the Wishart ensemble

3.1 Introduction

As mentioned in the introduction, the Wishart random matrix ensemble is probably the one

with the longest history. Designed as a generalization to multiple dimensions of the χ-squared

distribution, it was introduced in [2]. Nowadays it boasts a wide array of applications, from

finance [8] and telecommunication [9, 40, 41] to quantum information theory [42] and meso-

scopic physics [43]. Additionally, the significance of the Wishart matrices is a manifest of their

connection to the chiral random matrix ensemble. The latter is, in turn, of major importance in

the research of the spontaneous chiral symmetry breaking in Quantum chromodynamics. This,

however, will be the subject of chapter 4.

The studies which will be presented here aim to demonstrate that the structures described in

chapter 2, for the diffusing Hermitian matrices, appear also for the stochastically evolving, com-

plex Wishart type matrices. By the latter we understand matrices of the form L = K†K, with

the complex entries of the rectangular matrix K undergoing a Brownian motion. First, relying

on results of [44], we derive the Smoluchowski-Fokker-Planck equation for the joint probability

density of the eigenvalues. The rest of the chapter is based on [45] and [46]. In the large matrix

size limit, making use of the SFP equation, we uncover the nonlinear partial differential equation

which drives the evolution of the Green’s function. It is an analog of the inviscid complex Burg-

ers equation found in [31] for the Hermitian matrices. We solve this equation for two different,

generic initial conditions with the method of complex characteristics. We identify the caustics

as well as the shocks. Turning, subsequently to the average characteristic polynomial, we derive

33
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the PDE that it fulfils for arbitrary size of the matrix. Its general solution is given in the form of

an integral representation of the ACP. The proceeding study of the microscopic behavior of the

polynomial in the vicinity of the shocks is done for three possible scenarios. The first one arises

for a solitary, moving caustic. The second, when a caustic resides at the origin of the complex

plane. These are studied with the help of the equation driving the dynamics of the Cole-Hopf

transform of the ACP. The third and last situation occurs when the caustic actually arrives at 0.

To inspect the behavior of the ACP in this scenario, we exploit the steepest descent method used

in the case of the Hermitian matrices. In this chapter we don’t concern ourselves with the AICP.

This is because the associated results are easily derived based on the work performed for the

ACP in this chapter and for the AICP in the previous one.

3.2 From the SFP equation to the partial differential equation for

the Green’s function

The aim of this section is to define the Brownian motion of complex (β = 2) Wishart matrix

and derive the associated equation for the Green’s function in the large matrix size limit. To

perform the latter we will employ the strategy developed in [31] and exploited in the first part of

chapter 2.

First let us define K, a M × N (M > N) rectangular matrix with entries undergoing a stochastic

process defined by

dKi j(τ) = dxi j + idyi j = b(1)
i j (τ) + ib(2)

i j (τ), (3.1)

where b(1)
i j (τ), b(2)

i j (τ) are two independent sets of free Brownian walks driven by white noise

b(c)
i j (τ) = ζ(c)

i j (τ)dτ, (3.2)

which satisfies

〈
ζ(c)

i j (τ)
〉

= 0 (3.3)

and

〈
ζ(c)

i j (τ)ζ(c′)
kl (τ′)

〉
=

1
2
δcc′δikδ jlδ(τ − τ′). (3.4)
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Note, that we use the normalization from [46]. Moreover, let ν ≡ M − N and r ≡ N/M be the

rectangularity of K. The diffusing Wishart matrix we want to study is

L(τ) = K†(τ)K(τ). (3.5)

As usual, we are particularly interested in the behavior of the eigenvalues. K is not Hermitian.

It admits however a singular value decomposition according to K = UκV , where U and V are

unitary, and κ is rectangular, such that κii = κi and the rest of the matrix elements are equal to

zero. Denote the eigenvalues of L by λi. They are related to the singular values of K through

λi = κ2
i . As mentioned in the introductory chapter, we have learned from Dyson, in [24], that to

obtain the equations driving the dynamics of the eigenvalues, one can make use of the second

order perturbation theory. In the case of the Wishart ensemble this was done in [44], for ν = 0.

A straightforward generalization of that calculation yields

〈δκi〉 =
1
2

2(ν + 1) − 1
2κi

+
∑
j(,i)

[
1

κi − κ j
+

1
κi + κ j

] δτ (3.6)

and

〈δκiδκ j〉 =
1
2
δi j δτ. (3.7)

By noting that

λ′i ≡ λi + δλi = (κi + δκi)2 = λi + 2κiδκi + δκ2
i (3.8)

and after taking the average, we obtain

〈δλi〉 = 2κi〈δκi〉 + 〈δκ
2
i 〉. (3.9)

This allows us to switch to the realm of the eigenvalues of L, where

〈δλi〉 =

ν + 1 + 2λi

∑
j(,i)

1
λi − λ j

 δτ (3.10)

and

〈δλiδλ j〉 = 2λi δi j δτ. (3.11)
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The last two equations define the so-called Laguerre process, an analogue of the non-colliding

squared Bessel process [47, 48]. The real valued equivalent (b(2)
i j (t) = 0, so-called β = 1 case)

is called the Wishart process, and was first studied in [49, 50]. Moreover, a similar process yet

generalized to arbitrary values of β ∈ (0, 2], was recently studied in [51].

Now, we can write down the Smoluchowski-Fokker-Planck equation for P ≡ P(λ1, λ2, · · · , λN , t),

the joint probability density function for the eigenvalues to become λ1, · · · , λN at time τ given

some initial condition:

∂P
∂τ

=
∑

i

∂2

∂λ2
i

(λiP) −
∑

i

∂

∂λi


ν + 1 + 2λi

∑
j(,i)

1
λi − λ j

 P

 . (3.12)

For Ki j(0) = 0, its solution is easily verified to be

P = Cτ−MN
∏
i< j

(λ j − λi)2
N∏

k=1

λνke−
∑N

n=1 λn/τ, (3.13)

where C is a normalization constant.

Going back to the discussion that doesn’t require us to set the initial condition, we recall the def-

initions of quantities associated with the random matrix L. The averaged density of eigenvalues

is:

ρ̃ (λ, τ) =

〈 N∑
l=1

δ (λ − λl)
〉
, (3.14)

with the brackets signifying the averaging over P, whatever it is. The resolvent is as usual

defined by

G (z, τ) =
1
N

〈
Tr

1
z − L(τ)

〉
=

1
N

∫
dµ

ρ̃(µ, τ)
z − µ

. (3.15)

Finally, the two-point eigenvalue density function reads

ρ̃ (λ, µ, t) =

〈 N∑
l=1

∑
j(,l)

δ (λ − λl) δ
(
µ − λ j

)〉
. (3.16)

Now, we can proceed to the derivation of the PDE for the Green’s function. As in the case of the

diffusing Hermitian matrix, let us take (3.12), multiply it by
∑N

l=1 δ (λ − λl) and integrate over
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all N eigenvalues. We obtain:

∂ρ̃ (λ, τ)
∂τ

=
∂2

∂λ2

[
λρ̃ (λ, τ)

]
+

[
N

(
1 −

1
r

)
− 1

]
×
∂

∂λ
ρ̃ (λ, τ) − 2

∂

∂λ

[
λ−

∫
ρ̃ (λ, µ, τ)
λ − µ

dµ
]
. (3.17)

Here, we are interested in particular in the limit of N and M going to infinity, but in such a way

that the rectangularity r remains constant. To extract it, we need to set ρ̃ (λ, µ) = ρ̃ (λ) ρ̃ (µ) +

ρ̃con (λ, µ), where ρ̃con (λ, µ) is the connected part of the two-point density, expected to be of order

1/N as compared to the factorized contribution ρ̃ (λ) ρ̃ (µ). Additionally, one needs to rescale the

time with τ→ τ/M. Finally, we change the normalization of the eigenvalue densities so that

ρ̃ (λ) = Nρ (λ) , ρ̃ (λ, µ) = N (N − 1) ρ (λ, µ) . (3.18)

The following equation is obtained

∂ρ (λ, τ)
∂τ

+ (1 − r)
∂ρ (λ, τ)
∂λ

+ 2r
∂

∂λ

[
λρ (λ, τ)−

∫
ρ (µ, τ)
λ − µ

]
=

r
N
λ
∂2ρ (λ, τ)
∂λ2 +

r
N
∂ρ (λ, τ)
∂λ

− 2r
∂

∂λ

[
λ−

∫
ρcon (λ, µ, τ)

λ − µ
dµ

]
. (3.19)

Now we can take the large matrix size limit, dropping all the terms subleading in N.:

∂ρ (λ, τ)
∂τ

= (r − 1)
∂ρ (λ, τ)
∂λ

− 2πrλ
∂

∂λ

{
ρ (λ, τ)H

[
ρ (λ, τ)

]}
− 2πrρ (λ, τ)H

[
ρ (λ, τ)

]
. (3.20)

Taking the Hilbert transform of the above, we obtain:

∂H
[
ρ (λ, τ)

]
∂τ

= (r − 1)
∂H

[
ρ (λ, τ)

]
∂λ

+ 2πrλρ (λ, τ)
∂ρ (λ, τ)
∂λ

+

−2πrλH
[
ρ (λ, τ)

] ∂H [
ρ (λ, τ)

]
∂λ

+ πr
[
ρ (λ, τ)

]2
− πr

{
H

[
ρ (λ, τ)

]}2 . (3.21)

For the used identities see appendix A, where, in particular the fact that for f (x) = d
dx

{
ρ(x)H

[
ρ(x)

]}
,

H
[
x f (x)

]
= xH

[
f (x)

]
is proven. By combining the two equations, we retrieve a single partial

differential equation for the Green’s function:

∂τG(z, τ) = −∂zG(z, τ) + r
(
∂zG(z, τ) − 2zG(z, τ)∂zG(z, τ) −G2(z, τ)

)
. (3.22)

which is the analog of the complex Burgers equation derived in the previous chapter. We note

that it was first derived with different methods in [52]. Now, let us solve this PDE, with the

method of characteristics, for two different, generic initial conditions.
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3.3 Solving the Burgers equation with the method of characteristics

As we have learned in section 2.3, certain partial differential equations, here (3.22), can be

transformed to a set of ordinary differential equations. In this case we obtain:

dz
ds

= 1 − r + 2rzG, (3.23)

dτ
ds

= 1 (3.24)

and

dG
ds

= −rG2. (3.25)

As we can see, this time, the characteristic curves will not be straight lines and the solution shall

not be constant along them. Nonetheless, the method works aptly, as we will now see for two

examples of initial conditions.

3.3.1 Specific initial conditions

If we initiate the evolution with a matrix filled with zeros, then G0 ≡ G (z, τ = 0) = 1/z. Setting

z(s = 0) = z0 and τ(s = 0) = 0, we get G(s = 0) = 1/z0. Equations (3.24) and (3.25) give s = τ

and

G =
1

rτ + z0
. (3.26)

The third and last ODE (3.23), becomes

dz
dτ

= 1 − r +
2rz

rτ + z0
. (3.27)

Its solution reads:

z =

(
1 +

τ

z0

)
(z0 + rτ) . (3.28)
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One can now eliminate z0 from (3.26) and obtain

z =
1

G(z, τ)
+

τ

1 − rτG(z, τ)
, (3.29)

an implicit equation for G(z, τ). The solution is

G(z, τ) =
(r−1)τ + z −

√
(z − zL)(z − zR)

2rτz
, (3.30)

with

zL = (1 −
√

r)2τ, zR = (1 +
√

r)2τ. (3.31)

Making use of the Sochocki-Plemelj formula, we obtain the average spectral probability density

ρ (λ, τ) =

√
(λ − zL) (zR − λ)

2πλτr
, (3.32)

for τ = 1 - the classical Marchenko-Pastur distribution [53, 54]. zL and zR turn out to be the

edges of the spectrum. Note, that the eigenvalue probability distribution is non-zero at λ = 0

only if r = 1. For examples at different times and r parameters, see the plots on the left of figures

3.1 and 3.2.

The positions of the caustics are determined by

dz
dz0

∣∣∣∣∣
z0=z0c

= 1 −
r

z2
0c

τ2 = 0, (3.33)

which gives z0c = ±
√

rτ. As a result the caustics reside at zL and zR. This is also where the

shocks must be introduced for the procedure to provide a unique solution. The characteristics,

along with the caustics, are depicted on the left plot of figure 3.3.

We now turn two another initial condition, one defined by L(τ = 0) = 1N×Na2, which in the

large matrix size limit of r constant, translates to G(z, τ = 0) = 1
z−a2 . Of course, a consistency

check with the previous result can be done by putting a = 0. Again, let z0 and s be auxiliary

variables, the former labeling and the latter parametrizing the characteristic curves. We set

z(s = 0) = z0 + a2 and τ(s = 0) = 0, which gives G(s = 0) = 1
z0

. Solving (3.24) and (3.25), as

before, yields s = τ and

G =
1

rτ + z0
. (3.34)
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Figure 3.1: The above figure depicts the time evolution of the large N spectral density of the
evolving matrices for two scenarios that differ in the imposed initial condition. a was set to one

whereas r = 0.
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Figure 3.2: Same as figure 3.1, except r = 1/4.

We are therefore left with:

dz
dτ

= 1 − r +
2rz

rτ + z0
. (3.35)

With the new initial condition, this results in

z = (z0 + rτ)

1 +
τ

z0
+ a2 τr + z0

z2
0

 . (3.36)

Eliminating z0 from (3.34), we subsequently obtain an implicit, cubic equation for G(z, τ):

z =
1

G(z, τ)
+

τ

1 − rτG(z, τ)
+ a2 1

(1 − rτG(z, τ))2 . (3.37)

Again, the Sochocki-Plemelj formula yields the eigenvalue density for its proper solution. We

illustrate this for a couple of values of time and rectangularity in the right-side plots of figures

3.1 and 3.2.
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Figure 3.3: The thin blue lines are characteristics that remain real throughout their temporal
evolution. They terminate at the bold green lines which are caustics and shocks simultane-
ously. The dotted, red lines are caustics that do not coalesce with shocks nor the edges of the

eigenvalue spectrum.

In the case of this initial condition, we are particularly interested in the scenario in which r = 1.

This because only then, the right edge of the spectrum can reach the origin. Note, that one can

take the limit of N and M going to infinity, in such a way that r → 1 but ν = M − N stays

nonzero and constant. For the remaining part of this section we set r = 1.

The condition for z0c and thus the position of the caustics, is a cubic equation of the form:

z3
0c − z0cτ(2a2 + τ) − 2a2τ2 = 0. (3.38)

We then have 3 caustics in this scenario. They are shown in the second plot of figure 3.3. The

rightmost caustic is simultaneously a shock and travels with the right spectral edge. The other

two caustics meet at τc = a2, as can be deduced form the above equation. The one which is in a

particular time in the middle (green), is the one which is also a shock and which coincides with

the left edge of the eigenvalue density. The red caustic does not coincide with a shock.

3.4 Evolution of the averaged characteristic polynomial

Mimicking the strategy adopted in chapter 2, we will now set out to derive the partial differential

equation governing the ACP, which in the Wishart case we denote by Mν
N(z, τ) ≡ 〈det [z − L(τ)]〉.

Once again, we start by noting, that the Langevin equations describing the behavior of the real

and imaginary parts of the entries of matrix K imply, that the associated probability density
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functions obey the following diffusion equations

d
dτ

P(1)
ji =

1
4

d2

dx2
ji

P(1)
ji

d
dτ

P(2)
ji =

1
4

d2

dy2
ji

P(2)
ji . (3.39)

The matrix elements evolve independently and therefore, the joint probability density is P (x, y, τ) =∏
j,i,c P(c)

ji and satisfies

∂τP (x, y, τ) =
1
4

∑
j, i

(∂x ji x ji + ∂y jiy ji)P (x, y, τ) . (3.40)

We write the ACP in the form of the following integral

Mν
N(z, τ) =

∫
D(η, η̄, x, y) exp

[
η̄
(
z − K†K

)
η
]
P (x, y, τ) , (3.41)

where η is a column of complex Grassman variables ηi with i ∈ {1, 2, ...,N} and an integra-

tion measure D(η, η̄, x, y) ≡
∏

i, j,k dηkdη̄idx jidy ji was introduced. Acting with ∂τ on the above

representation of the ACP, we make use of relation (3.40). This yields

∂τMν
N(z, τ) =

1
4

∫
D(η, η̄, x, y) exp

[
η̄
(
z − K†K

)
η
]∑

j, i

(∂x ji x ji + ∂y jiy ji)P (x, y, τ) . (3.42)

The next step is to perform an integration by parts in all the xi j and yi j variables. Now, the

differentiation operator acts on the first exponent in the integral. Recall that, by definition,

(K†K)i j =
∑

k(xki − iyki)(xk j + iyk j). Taking the derivatives, results, after a slightly tedious

calculation, with

∂τMν
N(z, τ) = −

∫
D(η, η̄, x, y) η̄η

(
M + η̄K†Kη

)
exp

[
η̄
(
z − K†K

)
η
]
P (x, y, τ) . (3.43)

The (first) term Mη̄η, in the sum under the integrand, is in fact equivalent to a differentiation of

Qν
N(z, τ) with respect to z. The second one ( η̄η

(
η̄K†Kη

)
), is a bit more tricky, as we represent

it as a differentiation of the exponent with respect to Grassmann variables. Jointly, this amounts

to:

∂τMν
N(z, τ) = −M∂zMν

N(z, τ)

+

∫
D(η, η̄, x, y) η̄η exp (η̄ηz)

∑
i

ηi∂ηi
exp

(
−η̄K†Kη

)
P (x, y, τ) . (3.44)
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Subsequently, we perform integration by parts in the Grassmann variables, which gives

∂τMν
N(z, τ) = −M∂zQν

N(z, τ)

+

∫
D(η, η̄, x, y) exp

(
−η̄K†Kη

)∑
i

∂ηi

[
η̄η exp (η̄ηz)ηi

]
P (x, y, τ) . (3.45)

The last step is executing the Grassmann derivative. We obtain:

∂τMν
N(z, τ) = −z∂zzMν

N(z, τ) + (N − M − 1)∂zMν
N(z, τ), (3.46)

concluding the proof. This result can be crosschecked, for the simplest initial condition, by

explicitly computing the ACP, which in this case turns out to be a scaled, monic Laguerre poly-

nomial. This is an exercise in combinatorics that we leave for appendix C.

Finally, in accordance with the previous section, and moreover in view of the results of [31] and

chapter 2, we rescale the time with 1/M. Thus the ACP satisfies

∂τMν
N(z, τ) = −

1
M

z∂zzMν
N(z, τ) −

ν + 1
M

∂zMν
N(z, τ). (3.47)

3.4.1 The integral representation of the ACP

The solution to (3.47), reads

Mν
N(z, τ) = C τ−1z−

ν
2

∫ ∞

0
yν+1 exp

(
M

z − y2

τ

)
Iν

(
2iMy
τ

√
z
)

Mν
N(−y2, 0)dy, (3.48)

where Mν
N(z, 0) is the initial condition. One can check this by an explicit calculation. The

way to derive it, is to notice, that the change of variables z = w2 in 3.47, leads (for ν = 0)

to a two dimensional complex heat equation with central symmetry. Its solution for real z,

found for example in [56], can be analytically continued and generalized to arbitrary ν. As we

have already seen, the constant C is determined with the steepest descent method in τ → 0,

by matching the solution with the initial condition Qν
N(z, 0). To this end, we make use of the

fact that for | arg(x)| < π
2 (which in our case, translates to x =

2iMy
√

z
τ , so that arg (z) , 0):

lim|x|→∞ Iν(x) ' 1√
2πx

ex [55]. Therefore, in the τ→ 0 limit, we end up with a Gaussian function

under the integral. The matching condition then gives C = i−ν2M, and

Mν
N(z, τ) = i−ν2M τ−1z−

ν
2

∫ ∞

0
yν+1 exp

(
M

z − y2

τ

)
Iν

(
2iMy
τ

√
z
)

Mν
N(−y2, 0)dy. (3.49)
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This result has been recently derived in [57], with combinatorial methods, for a static Wishart

matrix perturbed by a source.

3.4.2 Partial differential equation for the Cole-Hopf transform of the ACP

Finally, the Cole-Hopf transform of Qν
N(z, τ), namely fN = 1

N∂zln(MN(z, τ)) satisfies

∂τ fN + r
(
2z fN∂z fN + f 2

N

)
+ (1 − r)∂z fN = −

r
N

(2∂z fN + z∂zz fN) (3.50)

in full agreement, in the large matrix size limit of r constant (i.e. when the right hand side

vanishes), with 3.22.

3.5 Universal microscopic scaling

In this section we, once again, turn to the microscopic, large matrix size limit behavior of the

ACP at the edges of the spectra. In case of the Wishart matrices, one can distinguish three

scenarios. The first one arises, when we study the surrounding of the right caustic in general,

and the left one if it has not reached or cannot reach the origin. This is usually called the soft

behavior. In the second case, one is interested in the vicinity of the caustic that has already

reached, or resides from the beginning at z = 0. Then, one talks about the hard edge and the

origin is referred to as the wall (because the eigenvalues cannot cross it). For this to be possible,

r has to be equal to 1 in the large M and N limit. One can however approach this limit in such

a way, that ν = M − N remains fixed and non-zero. The study of both of these scenarios is

possible with the initial condition of L(τ) = 0. We perform it however in the manner mentioned

in the introduction to section 2.5 and developed in [31] for the case of Hermitian matrices. This

strategy is based on the PDE for the Cole-Hopf transform of the ACP (3.22). One introduces an

ansatz in the form

fN
(
zc(τ) + Nαs, τ

)
≈ A(τ) + Nωχ(s, τ), (3.51)

where the scaling ω of the new function χ(s, τ) and the function A(τ) depend on the behavior

of fN when N goes to infinity, in which case it is equal to the Green’s function. As the leading

behavior of G(z, τ), close to the spectral edge, is |z − zc|
1/k (see (2.44)) and k = −α/(1 + α), the

previous statement means that ω = −(1 + α). Subsequently, the proper, large matrix size limit is
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taken in the new PDE and a new function φ(s, τ), such that ∂s ln φ(s, τ) = χ(s, τ), is introduced.

The resulting equation describing φ(s, τ) is then solved. In this way, the asymptotic behavior of

fN (zc(τ) + Nαs, τ) is recovered. As to the ACP, it can be written as

Mν
N
(
zc(τ)+Nαs, τ

)
≈ C(τ) exp

[
NωA(τ)s

]
φ(s, τ). (3.52)

One can confirm this by inserting the above form of Mν
N into the definition of fN (with the

derivative transformed accordingly to the change of variables) and compering it to our ansatz.

The weakness of this approach is that the constant C(τ) remains ambiguous due to the fact that

throughout the procedure we applied the Cole-Hopf transform.

The third scenario arises in the vicinity of the critical time in which the left edge hits the origin.

This can occur only for r = 1 in the large matrix size limit and as long as a , 0. We will

therefore use the second initial condition studied in section 3.3, that is L(τ = 0) = 1N×Na2.

The strategy described above is less suited for this case and we will hence exploit the steepest

descent method used for the Hermitian matrices.

3.5.1 Characteristic polynomial at the soft edge of the spectrum

For the L(τ) = 0 initial condition, the solution to the inviscid Burgers equation (3.30) is given

by formula (3.50)

lim
N→∞

fN(z, τ) =
(r − 1)τ + z −

√
(z − zL)(z − zR)

2rτz
, (3.53)

where zL and zR are given in (3.31). Expanding this functions around the respective spectral

edges gives k = 2,and therefore α = −2/3 and ω = −1/3. Hence, the ansatz reads

f L/R
N (zL/R + N−

2
3 s, τ) =

(r − 1)τ + zL/R

2rτzL/R

+ N−
1
3χ(s, τ), (3.54)

As described above, we insert it into (3.50). After taking the N → ∞ limit, one obtains:

−
1
z∗

+ 2χ∂sχ + ∂ssχ = 0, (3.55)
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where we define z∗ = {−z2
Lr

3
2 τ, z2

Rr
3
2 τ} depending on whether we inspect the left or the right

spectral edge. We have now

∂s

[
χ2 + ∂sχ −

s
z∗

]
= 0, (3.56)

which after integration yields

χ2 + ∂sχ −
s
z∗

+ g(τ) = 0. (3.57)

g(τ) is an arbitrary function of τ. Subsequently, we change to φ(s, τ) obtaining

∂ssφ(s, τ) +

(
g(τ) −

s
z∗

)
φ(s, τ) = 0. (3.58)

A change of the variable s, defined by s = y + g(τ)z∗, and a redefinition of φ(s, τ), through

ψ(y) = φ(y + g(τ)z∗), lead to

∂yyψ(y, τ) −
y
z∗
ψ(y, τ) = 0, (3.59)

which is a PDE satisfied by the Airy function. The final solution therefore reads:

φ(s, τ) = Ai
(

s − g(τ)z∗
3
√

z∗

)
. (3.60)

g(τ) is found by matching the limit of s → ∞ of (3.54) with the Green’s function (3.53) at

|z| → zL/R . One makes use of the fact that for |x| → ∞ and 0 ≤ arg(x) < π, in the leading order,

we have [55]
Ai′(x)
Ai(x)

∼ −
√

x, (3.61)

The result is g(τ) = 0 and

φ(s, τ) = Ai
(

s
3
√

z∗

)
. (3.62)

This concludes the analysis of the microscopic behavior of the ACP at the soft edge.
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3.5.2 Characteristic polynomial at the hard edge of the spectrum

Let us now consider the left edge of the spectrum for the L(τ) = 0 initial condition. The large

matrix size limit will be taken in such a way that r = 1 and ν is arbitrary but finite. The left edge

of the spectrum then resides at zero. To capture the features important in such a limit we rewrite

(3.50) in the following form:

∂τ fN +
(
2z fN∂z fN + f 2

N

)
= −

1
N

[
(2 + ν)∂z fN + z∂zz fN

]
. (3.63)

In this case, the Green’s function reads

f∞(z, τ) =
z −
√

z2 − 4τz
2τz

(3.64)

and as we move with z towards 0, we learn that A(τ) = 1
2τ , α = −2 and ω = 1. Hence, our ansatz

becomes

fN(N−2s, τ) =
1
2τ

+ Nχ(s, τ), (3.65)

which we insert into (3.63). Performing the limiting procedure yields

s∂ssχ + 2sχ∂sχ + (2 + ν) ∂sχ + χ2 = 0, (3.66)

and hence

∂s
[
s∂sχ + sχ2 + (1 + ν)χ

]
= 0. (3.67)

Integration over s, gives

s∂sχ + sχ2 + (1 + ν)χ + g(τ) = 0, (3.68)

with g(τ), an unknown function. As before, we introduce φ(s, τ), such that χ(s, τ) = ∂s ln φ(s, τ).

This results in the following PDE

s∂ssφ + (1 + ν)∂sφ + g(τ)φ = 0. (3.69)
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One proceeds by setting s =
[
h(τ)y

]2, with h(τ) an arbitrary function chosen later. Additionally,

we define ψ(y), such that φ(s) =
[
h(τ)y

]−ν ψ(y). In these new variables, (3.69) takes the following

form:

y2∂yyψ + y∂yψ +
[
4g(τ)h2(τ)y2 − ν2

]
ψ = 0. (3.70)

Le h(τ) = 1
2
√

g(τ)
. We therefore obtain:

y2∂yyψ + y∂yψ +
(
y2 − ν2

)
ψ = 0, (3.71)

which we recognize as the Bessel equation. The relevant solution ( e.g. consistent with smooth

behavior at zero) is ψ(y) = Jν(y), hence

φ(s, τ) = s−
ν
2 Jν

(
2
√

g(τ)s
)
. (3.72)

g(τ) is found by matching the asymptotic behavior of (3.65) for |s| → ∞ with the Green’s

function (3.64) at |z| → 0, that is in the same way it was obtained for the case of the soft edge.

Exploiting the fact that [55]:
J′ν(x)
Jν(x)

∼ −i (3.73)

for |x| → ∞ and 0 < arg(x) < π, we finally obtain g(τ) = 1
τ and

φ(s, τ) = s−
ν
2 Jν

(
2
√

s
τ

)
. (3.74)

3.5.3 Characteristic polynomial at the critical point

If we choose the initial condition in the form L(τ = 0) = 1N×Na2, for a , 0 and take the limit

of M and N going to infinity, in such a way, that r → 1 and ν remains constant and finite, then,

as we can see on the left plot of figure 3.3, the left caustic reaches 0 (at a critical time τc equal

to a2). We will now extract the behavior of the ACP in the vicinity of this spatiotemporal point.

To this end one makes use of the integral representation (3.49)

Mν
N(z, τ) = i−ν2M τ−1z−

ν
2

∫ ∞

0
yν+1 exp

(
M

z − y2

τ

)
Iν

(
2iMy
τ

√
z
)

Mν
N(−y2, 0)dy (3.75)

derived by solving equation (3.47).
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First let us extract the associated scaling of the eigenvalues. We can expand the Green’s function

around z = 0. For τ = a2, in the leading order in z, one obtains:

G(s, τ) −
2
3τ
∝ z−

1
3 , (3.76)

yielding the average eigenvalue spacing scaling as N−3/2. Additionally, we would like to have

control, in the large matrix size limit, of the time parameter telling us weather we are at the

origin. The idea is that the universal behavior of the ACP is already visible shortly before and

after τc. This is again connected to the number of eigenvalues in the small domain on the positive

real axis starting at 0. A careful expansion of G(z, a2 + t) in small t, shows that such a time scale

has to be of the order of N−1/2.

Recall that, when we exploited the steepest descent method for (3.48) in τ→ 0, we used the fact

that for | arg(x)| < π
2 : lim|x|→∞ Iν(x) ' 1√

2πx
ex [55]. The same expansion works for the N → ∞

limit and the saddle point equation reads therefore

y − i
√

z −
τy

a2 + y2 = 0, (3.77)

which is notably the same as (2.55), with the exception that here, z was replaced by its square

root. The three saddle points merge at y = 0 for z = 0 and τ = a2 and by this connection to the

case of the Pearcey behavior, one is not surprised that the proper change of variables is given

by τ = a2 + N−1/2a2t, z = N−3/2a2s (with arg (s) , 0) and y = N−1/4au. Expanding (for large

N) the natural logarithm arising from the exponentiation of the initial condition and taking the

large matrix size limit, we obtain the sought for behavior of the ACP:

Mν
N

(
N−

3
2 a2s, a2 + N−

1
2 a2t

)
≈ (−a2)N N

ν+1
2 s−

ν
2

∫ ∞

0
uν+1 exp

(
−

1
2

u4 + u2t
)
Iν

(
2iu
√

s
)

du. (3.78)

For reasons that we will clarify in the conclusions of this chapter, we call the integral in the

above formula the Bessoid function.

As a side remark, let us mention that for ν = −1
2 (and a = 1), (3.78) takes the form of:

(iπ)−
1
2 s−

1
4

∫ ∞

0
exp

(
−

1
2

u4 + u2t
)

cos
(
2u
√

s
)

du (3.79)

and is called the symmetric Pearcey integral through its connection with the symmetric Pearcey

kernel arising for phenomena of random surface growth with a wall [58].
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3.6 Chapter summary and conclusions

In this chapter, we have witnessed that the structures derived for the stochastic evolution of

Hermitian matrices can be also found in the case of the diffusing Wishart ensemble. In particular,

the ACP and its Cole-Hopf transform satisfy partial differential equations that are exact in the

size of the matrix. The latter can be solved in the large N limit via the method of characteristics,

providing us with an association between the edges of the spectra and those caustics that coalesce

with shocks. We have demonstrated moreover, that both PDEs contain information on the so

called microscopic behavior of the ACP. Apart from the Airy function obtained for a moving

caustic, we have recovered Bessel type behavior for a caustic remaining at the origin. For the

intermediate, critical scenario, of a caustic hitting the “wall" at 0, the ACP was shown to take the

form of a symmetric analog of the Pearcey function. Surprisingly, such function emerges (with

ν = 0) in the study of optically active, otherwise known as chiral, crystals. There, the Bessoid

is a canonical function arising in the description of an associated, rotationally symmetric cusp

(cuspoid) optical diffraction catastrophe [59–61]. We therefore use the same name for its RMT

equivalent.



Chapter 4

Diffusing chiral matrices and the

spontaneous breakdown of chiral

symmetry in QCD

4.1 Introduction

Quantum chromodynamics (QCD), which describes the interaction of quarks and gluons, is

a Yang-Mills theory coupled to massive quark fields (q), with local SU(Nc) gauge symmetry,

where Nc = 3 is the number of colors, the analogs of quantum electrodynamic charges. Being

more then fifty years old, QCD is not completely solved and still evades full understanding. In

particular, color confinement, the fact that color charged particles cannot be isolated and thus

directly observed, is not yet entirely grasped. One way to avoid some of the difficulties is to

study a theory that is simplified. As observed by t’Hooft [62], this can be achieved by taking the

number of colors to infinity. It is believed, that confinement preserves its nature and thus can be

understood in this limit.

In this context, the so called Wilson loop, a path ordered exponential of the gauge field trans-

ported around a closed curve of area A, is especially interesting. This is because, for small A,

it probes short distances and the associated perturbative physics, whereas, in the opposite limit,

it captures nonperturbative effects. One can exploit it to distinguish between the confined and

deconfined phases. In two dimensions, Yang-Mills theory becomes a matrix model in which the

Wilson loop is a Nc × Nc unitary matrix, with eigenvalues residing on a radius one circle in the

51
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complex plane. Averaging the spectrum over gauge configurations, one observes two distinct

phases in growing A. The first is associated with eigenvalues concentrated on an arc, the second

relates to the circle being uniformly covered. In the large Nc limit, the transition (discovered

by Durhuus and Olesen [63]) is sharp. This picture was validated numerically in three and four

dimensions [64, 65]. Moreover, the averaged characteristic polynomial of the Wilson loop was

shown to satisfy a complex diffusion equation, implying that its Cole-Hopf transform fulfills a

Burgers equation, in this case, with a negative viscosity proportional to the number of colors

[66, 67]. Narayanan and Neuberger conjectured, that the spectral behavior in the vicinity of the

transition point is universal. As was suggested in [67], there indeed exists a simple random ma-

trix model with the same, microscopic, spectral properties. It is a multiplicative diffusion (with

the role of time played by A) of unitary matrices provided by Janik and Wieczorek in [68]. In

the large matrix size limit, the associated ACP is described, at the closure of the spectral gap, by

the Pearcey function.

It seems confinement is intimately related with the spontaneous chiral symmetry breaking (SχSB),

a phenomenon responsible for most of the mass in the universe described by the Standard Model

[69]. The fact that the two occur at roughly the same temperatures [70] corroborates this notion.

Moreover, beneath a certain energy scale, with the chiral symmetry broken, the spectral fluctua-

tions of the Dirac operator are described by chiral random matrices [5, 71, 72]. This leads us to

propose a model of diffusing chiral matrices, governed by a viscous Burgers-like equation, that

would provide a mechanism responsible for the spectral oscillations of the Dirac operator that

accompany the spontaneous breakdown of chiral symmetry.

In section 4.2, we briefly describe SχSB and its connection to random matrix theory. Subse-

quently, the diffusing chiral matrix model is introduced through its connection with the Wishart

matrices described in the previous chapter. Thus, we obtain the PDEs governing the associ-

ated ACP and its Cole-Hopf transform. In the large matrix size limit, the latter is precisely

the inviscid complex Burgers equation we encountered in chapter 2. Hence, the structure of

characteristics, caustics, the spectral density function and the scaling of the eigenvalues at the

shocks can be also traced back to our previous results. Finally, we uncover the function govern-

ing the behavior of the characteristic polynomial at the critical point associated with SχSB. We

conclude with a summary and a prospect of possible future studies.

This chapter is based on [73].
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4.2 Spontaneous breakdown of chiral symmetry in QCD and its re-

lation to chiral matrices

In Euclidean space, the partition function of QCD can be written as

ZQCD(m f ) =

∫
DAµ

N f∏
f =1

det
(
D + m f

)
e−S Y M ,

where the integral is over the non-Abelian gauge fields Aµ, S Y M is the Euclidean Yang-Mills

action and m f are quark masses of N f = 6 different flavors. D, the Dirac operator is defined

by γµ(∂µ + iAµ), where γµ are Euclidean gamma matrices, and fulfills {D, γ5}=0. Here, Nc ≥ 3

and quarks are in the fundamental representation. If we assume that m f = 0, the right-handed

quarks qR = 1
2 (1 + γ5)q and the left-handed quarks qL = 1

2 (1 − γ5)q, such that γ5qR/L = ±qR/L,

decouple and do not interact with each other. The theory becomes U(N f )×U(N f ) symmetric.

When their numbers differ i.e NR − NL ≡ ν , 0, the axial UA(1) symmetry is broken and we are

left with SUV(N f )×SUA(N f )×UV(1), where the UV(1) vector symmetry is responsible for the

baryon number conservation.

Although in reality, the quarks are not massless and the symmetry is broken explicitly, their

masses cover several orders of magnitude. Moreover the up, down and strange are much lighter

than charm, bottom and top. One then can decouple the two groups and treat the lightest quarks

as massless and the masses of the heavier as equal to infinity. This restores SUV(N f )×SUA(N f )

with N f = 3 and allows the study of a low energy region of QCD. In this approximation, if the

space volume is infinite, the SUA(3) symmetry can be broken spontaneously, at some critical

temperature, by a non zero vacuum expectation value Σ ≡ 〈q̄q〉, the so called quark condensate,

an order parameter for chiral symmetry. The Banks-Casher [74] relation

|〈qq〉| = π
ρ(0)
V4

, (4.1)

relates it to ρ(0), the averaged (over the gauge field configurations) level density of the Eu-

clidean Dirac operator near the vanishing eigenvalue. Here, in four dimensions, V4 ≡ L4 is the

Euclidean volume. The complicated structure of the QCD vacuum makes the spontaneous sym-

metry breaking a result of an interaction of many microscopic degrees of freedom. (4.1) shows

that it requires a strong accumulation of eigenvalues near zero. In particular, a level spacing ∆,

proportional to 1/L4, much larger than of a free system (∆ ∼ 1/L)[75]. Due to this eigenvalue
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pileup, there exists a spectral regime, for which the properties of the phenomenon are dictated

solemnly by the symmetries of the theory. Such a universal region can be well described by

random matrices. In particular, for eigenvalues smaller than the so called Thouless scale ETh,

the spectral fluctuations are described by chiral random matrix models. In QCD, this regime of

applicability is determined by the condition EQCD
Th /∆ = F2

πL2 � 1, where Fπ is the pion decay

constant [76, 77]. There, the partition function, for a fixed topological sector, reads

ZQCD
ν =

〈∏
f

mν
f

∏
l

(λ2
l + m2

f )
〉
ν

(4.2)

where the averaging is done with respect to gluonic configurations of a given topological charge

ν (related to fermionic zero modes and arising through the Atiyah–Singer index theorem). Due

to the chiral symmetry, the non-zero eigenvalues of D come in pairs of ±iλk. In the chiral

Gaussian random matrix model, corresponding to QCD with Nc ≥ 3, the role of the massless

Dirac operator is played by a random matrix W(= −iD) where

W =

 0 K†

K 0

 . (4.3)

Here, K is a rectangular M × N (M > N) matrix with complex entries, drawn from a Gaussian

distribution. Note that W is Hermitian, and therefore its eigenvalues, κi’s, are real. Moreover,

W anticommutes with the analogue of the Dirac matrix γ5, defined here as γ5 = diag(1N ,−1M),

reflecting the symmetry of the Dirac operator. This implies in particular that the eigenvalues

come in pairs of opposite values. By construction, W has in addition ν ≡ M−N zero eigenvalues.

These mimic the zero modes of quarks propagating in gauge fields of non trivial topology.

In the next section we propose a generalization of W that allows us to capture the characteristic

behavior of 4.2, represented by the associated ACP, at the moment of SχSB.

4.3 The effective model of diffusing chiral matrices

We start by defining our diffusing chiral matrix. It takes the form

W(τ) =

 0 K†(τ)

K(τ) 0

 , (4.4)
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where the complex and time dependent entries of K(τ) are defined with white noise driven brow-

nian walks (3.2-3.4). As the characteristic determinant of W(τ) reads wν det
(
w2 − K(τ)†K(τ)

)
,

the associated, non-zero eigenvalues, when squared, are equal to the eigenvalues of the diffusing

Wishart matrix L(τ) from chapter 3. Moreover, the ACP can be defined by

Qν
n(w, τ) ≡ 〈det[w −W(τ)]〉 = wν

〈
det

(
w2 − K†K

)〉
, (4.5)

where n = M + N. It is related with the Wishart matrix ACP through the relation Qν
n(w, t) =

wν Mν
N(z = w2, t). With (3.47), this means that, after the familiar time rescaling of τ → τ/M, it

satisfies the following PDE:

∂τQν
n(w, τ) = −

1
4M

[
∂wwQν

n(w, τ) +
1
w
∂wQν

n(w, τ) −
ν2

w2 Qν
n(w, τ)

]
. (4.6)

Take note, that for ν = 0 this is an equation of the form ∂τQ0
n(w, τ) = − 1

4N ∆r
wQ0

n(w, τ), where ∆r
w

is the radial part of a Laplace operator in polar coordinates. The integral representation of the

arbitrary ν solution reads

Qν
n(w, τ) = 2M τ−1

∫ σ∞

0
y exp

(
−M

y2 − w2

τ

)
Iν

(
−

2Miyw
τ

)
Qν

n(iy, 0)dy, (4.7)

where Qν
n(w, 0) is the initial condition and σ = sgn [Im (w)]. It holds as long as w is imaginary.

We define the Cole-Hopf transform of Qν
n by hn ≡ hn(w, τ) = 1

n∂wln(Qν
n(w, τ)). Its evolution is

thus governed by the following PDE

2
1 + r

∂τhn + hn∂whn =

−
r

2(1 + r)N
∂wwhn −

r
2w(1 + r)N

∂whn +
r

2w2(1 + r)N
hn −

(
1 − r
1 + r

)2 1
w3 , (4.8)

where, as we recall, r = N/M.

Finally, the Green’s function for the chiral matrix is

g(w, τ) ≡
1
n

〈
Tr

1
w −W(τ)

〉
. (4.9)
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It is connected to the Wishart matrix resolvent G(z, τ), by the following transformation (see e.g.

[78]):

G
(
z = w2, τ

)
=

r − 1
2rw2 +

r + 1
2rw

g (w, τ) . (4.10)

As we have already learned: g(w, τ) = limn→∞ hn(w, τ). Therefore, in the large matrix size limit

of r constant, one obtains the PDE driving the evolution of the resolvent

(
1 − r
1 + r

)2

+ w3
[

2
1 + r

∂τg + g∂wg
]

= 0. (4.11)

In the previous section, we have seen that the chiral symmetry breaking occurs when the spectral

density of the Dirac operator, at the origin, acquires a non-zero value. This happens at some

specific parameter driving the change in the system. To see a realization of this scenario in our

model, we choose the initial condition to be W(τ = 0) = diag(−a..., a..., 0...), a matrix with N/2

eigenvalues equal to a, N/2 equal to −a (with N even) and ν eigenvalues equal to zero. Moreover,

in the large matrix size limit, we require ν to be finite and thus r has to be equal 1. In this case,

(4.11) reduces to the same Burgers equation that was obtained for Hermitian matrices in [31]

and chapter 2. Additionally, the initial condition for the Green’s function takes the form of

g(w, τ = 0) = g0(w) = 1
2

(
1

w−a + 1
w+a

)
= w

w2−a2 , precisely the same as the resolvent in the second

example of subsection 2.3.1. This way we know the structure formed by the characteristics,

caustics and shocks is depicted in the second plot of figure 2.2, whereas the associated evolution

of the spectrum is shown on the right hand side of figure 2.1. As the two caustics (shocks) join

in the cusp at (wc = 0, τc = a2), so do the two bulks of the spectrum reach each other. After that,

in agreement with our initial intention, a sufficient number of eigenvalues is accumulated at the

origin, which signifies that the chiral symmetry is broken by the quark condensate.

As announced, we are particularly interested in the behavior of the ACP (4.7) at the vicinity of

the critical point. The initial condition reads Qν
n(w, τ = 0) = wν

(
w2 − a2

)N
. For simplicity, we

set a = 1 and continue for sgn [Im(w)] > 0. From the relation between the steepest descent

analysis and the structure formed by the characteristic curves (see subsection 2.5.1), we deduce

that the three associated saddle points merge at y = 0. The proper rescaling of the involved

variables, also the same as for the Pearcey function, reads

y = n−
1
4 u, w = n−

3
4 q, τ = 1 + n−

1
2 t. (4.12)
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As to the integral itself, the chiral symmetry imposes an additional symmetry in the spectrum,

therefore, the exponential function of q in the Pearcey integral (2.57) is traded for a Bessel

function. The usual series expansion of the logarithm stemming from the exponentiation of the

initial condition and some simple algebra yield the critical asymptotic (N → ∞, M → ∞, ν

constant) behavior of the averaged characteristic polynomial proportional to:

∫ ∞

0
uν+1 exp

(
−

1
4

u4 +
1
2

u2t
)

Iν (−iqu) du. (4.13)

It is therefore captured by the Bessoid function that we recognise from the previous chapter and

which has its analog in optics, as we have learned in section 3.6. In the context of QCD, this

result was glimpsed for a special case, associated, in this notation, with ν = 0 in [79].

4.4 Conclusions

In this chapter, motivated by a recently suggested connection between the behavior of the Wilson

loop in large Nc Yang-Mills theory and a multiplicative diffusion of unitary matrices, we have

proposed a model of stochastically evolving chiral matrices, which allowed us to study the spon-

taneous breakdown of chiral symmetry in Nc ≥ 3 QCD. Relying on the results form pervious

chapters, we have derived partial differential equation for the associated ACP and its Cole-Hopf

transform. These equations provide the link between the macroscopic and microscopic proper-

ties of the associated random matrix model. The bonding parameter is played by the negative

viscosity, proportional to the inverse size of the matrix. When studied with a generic type of

initial conditions, the PDEs yield the critical microscopic behavior (described, as we show, by

the Bessoid function), which we associate with the properties of the fixed topological sector

partition function in QCD at the moment of spontaneous breakdown of chiral symmetry.

Interestingly, it was recently observed, that chiral symmetry can be broken in a scenario with

an infinite Nc and at a finite critical volume [80, 81]. Moreover, the associated scaling of eigen-

values turned out to be proportional to 1/N3/4. Such an accumulation is possible because Fπ

scales like
√

Nc, and therefore more and more eigenvalues of the Dirac operator fall into the

universal window as the number of colors tends to infinity. We therefore suspect, that our study

would be relevant also in this setting. In this case, the size of the matrix is equal to the number

of colors whereas the time parameter τ is connected to the space volume. In view of the results

for the Wilson loop, described in the introduction, and the similarity between the Pearcey and
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the Bessoid functions, we find this particularly intriguing. It would be interesting to study the

weak to strong coupling and the finite volume SχSB transitions simultaneously, both in lattice

simulations and in some theoretical model.



Chapter 5

Diffusion in the space of

non-Hermitian random matrices

5.1 Introduction

So far, we have seen that the large N spectral dynamics of Hermitian, Wishart and chiral matrices

with entries performing Brownian motion, are driven, through the Green’s function, by non-

linear partial differential equations akin to the inviscid Burgers equation. Moreover, associated

averaged characteristic polynomials and averaged inverse characteristic polynomials satisfy, for

finite N, diffusion-like equations which, coupled with initial conditions, have simple solutions

cast in forms of integrals.

The GUE and Wishart ensembles are distinguished within random matrix theory by their sig-

nificant role and ease of treatment. There is however another type of a random matrix, which

exceeds the two in ones conceptual simplicity. This is a matrix filled with complex numbers

and not subject to any symmetries, one that belongs to the Ginibre ensemble [82] and an ex-

ample from a broader class of non-Hermitian random matrices. These play a role in quantum

information processing [83], in QCD with a finite chemical potential [84], in financial engineer-

ing (for lagged correlations) [85, 86], in the research on neural networks [87], two-dimensional

one-component plasma [88], the fractional quantum Hall effect [89] or the analysis of magne-

toencephalographic data [90]. Eigenvalues themselves, however, are not of sole interest in the

case of non-Hermitian random matrix ensembles. The statistical properties of eigenvectors are

59
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equally significant [91], in particular, in problems concerning scattering in open chaotic cavities

or random lasing [92–94].

A question arises, whether the structures described above exist also for non-Hermitian ensem-

bles. In contrast to those we have already studied, matrices that are not self-adjoint have com-

plex eigenvalues. The spectral behavior cannot be thus accessed with the usual Green’s function.

Nonetheless, the answer to the question posed is positive [95]. Indeed, as we shall see below,

there exist partial differential equations that drive the dynamics of certain objects which not only

carry information about the eigenvalues but also about the eigenvectors. Surprisingly, however,

the evolution takes place in an additional variable, set to zero at the end of the calculations.

This chapter has the following structure. We start with the eigenvalues of non-Hermitian ma-

trices and recall the idea of the so-called electrostatic analogy, defining objects that allow to

access the spectral density through a duplication method. Subsequently we point out, how this

is linked to a certain correlation function of eigenvectors. Then, we introduce an extended aver-

aged characteristic polynomial (EACP) and derive the partial differential equations it satisfies.

Finally we solve them for the case of simplest initial conditions, re-deriving, properties of the

Ginibre ensemble. We conclude with a discussion of how this framework leads to new insights

and results in the area of non-Hermitian random matrices.

5.2 Eigenvalues

Let X be an N × N, random, non-Hermitian matrix filled with complex entries. It can be repre-

sented, via Schur decomposition, as X = U(Λ + T )U†, where U is a unitary, Λ a diagonal and T

an upper triangular matrix. The entries of Λ are the eigenvalues of X. The non-Hermitian matrix

can be diagonalized explicitly through X = VΛV−1, however then V needs not to be unitary. If

it is, the matrix X is called normal (this is equivalent to setting T = 0).

The standard procedure to access the complex eigenvalues of X relies on defining the following

“electrostatic potential" [87].

V(z, z̄) =
1
N

〈
Tr log

[
(z − X)(z̄ − X†) + ε2

]〉
, (5.1)
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where the averaging is over the random matrix ensemble. The “electrostatic field" forms the

non-Hermitian random matrix Green’s function:

G (z, z̄) ≡ ∂zV(z, z̄) = lim
ε→0

lim
N→∞

1
N

〈
Tr

z̄ − X†

(z − X)(z̄ − X†) + ε2

〉
. (5.2)

Notice, that if the limits were taken in a reversed order, it would reduce to the usual resolvent.

With such a definition however, using a two dimensional representation of the Dirac delta func-

tion of the form

πδ(2) (z − zi) = lim
ε→0

ε2(
ε2 + |z − zi|

2
)2 , (5.3)

we easily see, that an analog of the Gauss law can be stated as

ρ(z) =
1
π
∂z̄G =

1
π
∂zz̄V, (5.4)

relating the spectral density ρ(z) ≡ 1
N

〈∑
i δ

(2) (z − zi)
〉

with G.

Now, one would like to know how to calculate the extended Green’s function. This is achieved

through the so-called duplication [96], quaternionization [97] or Hermitization [98]. Presented

here along the lines of [97], it’s based on enlarging the matrix structure. In particular we intro-

duce

Q =

 z iε

iε z̄

 , X =

X 0

0 X†

 (5.5)

and define

G(z, z̄) =

G11 G11̄

G1̄1 G1̄1̄

 = lim
ε→0

lim
N→∞

1
N

〈
bTr

1
Q − X

〉
, (5.6)

with a following block-trace formula

bTr

A B

C D

 =

TrA TrB

TrC TrD

 . (5.7)

This structure can be studied with the diagrammatic method [99, 100] and, moreover, proved to

be useful in applying Free Random Variables calculus to non-Hermitian random matrices [101].
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The key observation is that G(z, z̄) = G11 and the condition for the boundary of the spectrum is

given by G11̄G1̄1 = 0.

5.3 Eigenvectors

Let us now consider the eigenvectors. We will use the bra-ket notation. A non-Hermitian,

non-normal matrix will have two sets of eigenvectors. The left eigenvectors 〈Li| , satisfying

〈Li| X = 〈Li| λi and the right eigenvectors |Ri〉 following X|Ri〉 = λi |Ri〉. Their behavior can be

non-trivially correlated. In particular we can introduce (see [91, 102] ) the function

O(z) ≡
1
N
〈
∑
α

Oααδ
2(z − zα)〉, (5.8)

with Oαβ = 〈Lα|Lβ〉 〈Rα|Rβ〉. This quantity turns out to be important for example in quantum

chaotic scattering. It tells us how left and right eigenvectors associated with the same eigenval-

ues are correlated, on average over the whole spectrum. What is interesting for us, however, is

that it can be written in terms of the off-diagonal terms of (5.6). One can prove [103] that, in

fact, in the large N limit:

O(z) =
N
π
G11̄G1̄1. (5.9)

5.4 The diffusion of a non-Hermitian matrix and the extended av-

eraged characteristic polynomial

Now, we are prepared to tackle the problem of a non-Hermitian matrix performing a Brownian

motion. By this, we understand that the elements of X, that is Xi j = xi j + iyi j, where xi j and yi j

are real, are driven by the following Langevin equations:

dxi j =
1
√

2N
dBx

i j, dyi j =
1
√

2N
dBy

i j. (5.10)

The matrix entries evolve independently and therefore the joint probability density function

P(X, τ), the probability that the matrix will change from its initial state X0 at τ = 0 to X at time
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τ, satisfies:

∂τP(X, τ) =
1

4N

∑
i, j

(∂2
xi j

+ ∂2
yi j

)P(X, τ). (5.11)

In a crucial step, we now define the extended averaged characteristic polynomial as

D(z, z̄,w, w̄) ≡ D ≡
〈
det

(
(z − X)(z̄ − X†) + |w|2

)〉
=

〈
det

z − X −w̄

w z̄ − X†


〉

=

∫
D[X]P(X, τ) det

z − X −w̄

w z̄ − X†

 , (5.12)

with the measure D[X] =
∏

i, j dxi jdyi j. As one can see, its relationship with the quaternionic

Green’s function from (5.6) is designed to mimic the connection between the ACP and the usual

resolvent. There is however one exception to this and it is formed in the promotion of iε, playing

initially the role of a regulator, to an independent complex variable w. Additionally, it is clear

from the definition, that D has a symmetry in w, that is it depends only on |w|. We hence set

r ≡ |w|. The announced relations are established again through the Cole-Hopf transform. We

thus define two functions v = v(z, r, τ) and g = g(z, r, τ):

v ≡
1

2N
∂r ln D, (5.13)

g ≡
1
N
∂z ln D, (5.14)

In the large N limit, and with r → 0, g = G11 and v2 = G11̄G1̄1. Therefore, g provides us with the

information about the eigenvalue spectrum, whereas v tells us about the eigenvector correlation.

Finally, note the relation ∂zv = 1
2∂rg, with which these two are connected.

Led by our results concerning Hermitian and other matrix ensembles, we shall now look for a

partial differential equation satisfied by D. To this end we write the determinant in terms of an

integral of vectors (η, η̄, ξ and ξ̄) of anti-commuting Grassmann variables

det

z − X −w̄

w z̄ − X†

 =

∫
D[η, ξ] exp

(η̄ ξ̄

) z − X −w̄

w z̄ − X†


ηξ


 ≡

∫
D[η, ξ]eTg(z,w,X;η,ξ),

(5.15)

where the measure reads D[η, ξ] =
∏

i dηidη̄idξidξ̄i, and we have introduced Tg for notational

convenience.
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By virtue of this representation, differentiating D with respect to τ, using the entry-wise diffusion

equation (5.11) and integrating by parts (all in the manner of derivations from the previous

chapters), we obtain

∂τD(z,w) =
1
N

〈∫
D[η, ξ]

∑
i j

η̄iη jξ̄ jξieTg

〉
τ

. (5.16)

On the other hand, by explicit calculation one can show that the same expression is obtained by

acting on Dτ with an operator 1
N∂ww̄. This leads to a diffusion like partial differential equation

for the averaged extended characteristic polynomial

∂τD(z,w) =
1
N
∂ww̄D(z,w). (5.17)

Note that, once again, the diffusion constant turned up to be inversely proportional to the size

of the matrix. The time evolution of the matrix X is therefore linked to the dynamics in the

seemingly auxiliary space of w.

Finally, on the basis of (5.17) and by the definitions of v and g we obtain the two following

nonlinear partial differential equations:

∂τv = v∂rv +
1
N

(
∆r −

1
4r2

)
v (5.18)

and

∂τg = v∂rg +
1
N

∆rg, (5.19)

where ∆r = 1
4 (∂rr + 1

r ∂r) is the radial part of the two-dimensional Laplacian. We have therefore

found the structure announced in the introduction. These equations are exact for any N. The

1/N factor is, again, a viscosity-like parameter. There are, however, crucial differences between

the canonical Hermitian result from chapter 2 and the one we just obtained. Instead of a one

complex Burgers-like equation, we obtained two. The first describes the evolution (in the large

N limit) of an eigenvector correlator. The dynamics takes place in a real variable which is

somehow auxiliary to the problem, as to obtain the result we have to set r = 0. Through the

second PDE, the evolution of the eigenvalues is connected with the behavior of the eigenvectors.

Here, too, it takes place in the r space. Note finally, that the z, z̄ dependence of D, g and v is

encoded in their respective initial conditions D0, g0 and v0.
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In the inviscid (large N) limit, (5.18) takes the form

∂τv = v∂rv, (5.20)

whereas, by ∂zv = 1
2∂rg, (5.19) can be written as

∂τg = 2v∂zv. (5.21)

As we have already learned in previous chapters and shall see in the next subsection, the former

is easily solved with the method of characteristics. The latter subsequently gives g through an

integration with respect to τ.

5.4.1 The general solutions

Here we will present some solutions to the equations presented above. Let us start with the

partial differential equation for D. Cast in terms of r, it reads

∂τD =
1
N

∆rD. (5.22)

We have considered a similar PDE in the case of the chiral ensemble. Moreover, it’s solution

can be found in [56] and reads

D =
2N
τ

∫ ∞

0
qe−N q2+r2

τ I0

(
2Nqr
τ

)
D0(q, z, z̄)dq, (5.23)

which can be checked by a direct calculation. The full significance of this result is still unknown.

In the case of the simplest initial condition of X0 = 0, for τ = 1, D forms the so called bare

kernel [104] of the Ginibre ensemble and its asymptotics in the large N limit, at r = 0, give the

microscopic behavior of the spectral density. Its role in the case of other initial conditions is

subject of ongoing research which will be presented in future publications.

We now turn to equation (5.20). It has the form of an inviscid Burgers equation and therefore

the characteristics are straight lines given by

r = ξ − v0(ξ)τ, (5.24)
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and labeled with ξ. v0 plays the role of the velocity of the front-wave. Note however that the

evolution happens in the whole w space. How this affects the approach with the method of

characteristics will become clear in the next subsection, where we present a specific example.

The implicit solution reads

v = v0(r + τv). (5.25)

Naturally, g is recovered through

g =

∫
2v∂zvdτ (5.26)

subject to the initial condition.

5.4.2 Solution for the X0 = 0 initial conditions

Let us now consider a specific example of an initial condition, namely X0 = 0, by which we

mean that all the matrix elements are equal to zero at τ = 0. We choose it because it will be the

easiest to treat, the calculations will be transparent and we will be able to confront the results

with well known properties of the Ginibre ensemble. Note however that this procedure works

for any initial condition.

As X0 = 0, we have, by definition, D0(z,w)) = (|z|2 + |w|2)N . This results in v0 = r/(zz̄ + r2) and

g0 = z̄/(|z|2 + r2), in particular g0 = 1/z for r = 0. Let us start with v. It has a radial symmetry in

the space of w. To observe the whole structure formed by the characteristics, instead of the radial

variable we shall consider a cross section of the complex plane of w such that it goes through its

center. Without loss of generality (due to the radial symmetry), we choose the real axis setting

Im(w) = 0 and Re(w) = µ. One can see that the solution consists of two symmetric branches

v(µ) = v(−µ). Through (5.25), it is represented by the following pair of Cardano equations:

v
(
zz̄ + (±µ + τv)2

)
= ±µ + τv. (5.27)

As we already know, the mapping between r and ξ breaks down when, at some positions µ = ±r∗,

the derivative dξ
dr

∣∣∣∣
r=r∗

becomes singular. The set of such points defines the caustics. For each

point in the complex plane of z we can construct characteristics living in the space of (w, τ). As

we are dealing with an inviscid Burgers equation, they are straight lines. Moreover, they respect
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the radial symmetry, as do the caustics, which form an axially symmetric cone-like surface in

the (w, τ) space. The caustics emerge, when a critical time τc = |z|2 is reached. Therefore, if

we are in the central point of the ’physical’ complex plane of z, they appear at τ = 0. It always

happens, however at µ = 0. When the characteristics cross the caustics, the solution ceases to

be unique. It is a manifest of the fact, that this region is reached by characteristic lines starting

at, both, µ < 0 and µ > 0. To solve this problem, as usual, a shock has to be introduced. Either

through the Rankine-Hugoniot condition or by a shear argument of symmetry, one can see that

it has to be a ray on the µ = 0 line, starting at τc. The caustics, can be mapped, for a given

time τ to the space (z, r) - there they form a rotationally symmetric surface. It is important to

understand, that this last symmetry is caused by the symmetry of the initial condition, whereas

the symmetry in the (w, τ) space is inherent to the general problem. The described features are

depicted in Fig. 5.1 where the analytical solution for v at an arbitrary z at an associated critical

τ is also shown. Figure 5.2 shows the same function, before, at and after τc. We see in the

rightmost figure the remnants of the non-uniqueness of the solution.

Μ

Τ

 z¤2

v

Μ
0

0

z

r

Figure 5.1: The main figure shows, for a given |z|, the characteristics (straight lines) and caus-
tics (dashed lines). Inside the later a shock is developed (double vertical line). Left inlet shows
the solution of eq. (5.27) at (τ = |z|2). Right inlet shows the caustics mapped to the (r = |w|, z)
hyperplane at the same moment of time. The section r = 0 yields the circle |z|2 = τ, bounding

the domain of eigenvalues and eigenvectors correlations for the GE.

Although the shock formation involves the whole (w, z) space, its dynamics is remarkably con-

fined to the region of r = |w| → 0, close to the z-plane, which is the basic complex plane in our

considerations. In that limit, the solutions to (5.27) are

v2 = (τ − |z|2)/τ2 and v = 0, (5.28)
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Figure 5.2: The plots depict the function v for z = 1 at times τ = 0.5, 1, 1.5 with blue lines.
The middle one shows the behavior at τc. After the critical time the method of characteris-
tics produces two solutions in a particular region of µ. The one that is discarded, due to the

introduction of a shock, is depicted by green dashed lines.

which match at |z| =
√
τ.

We turn now to the function g which will provide us with the information on the average spectral

density. For v = 0 we have ∂τg = 0 so, based on (5.26), g is constant in time, and therefore

it is equal to g = 1/z. Taking the other solution for v leads, via elementary integration, to

g = z̄/τ + f (z), where an arbitrary function f (z) is set to zero by the condition that the two

solutions for g have to match at |z| =
√
τ. Note that for r = 0, g coincides with the electric field

G(z, z̄) in the standard formulation mentioned earlier, so the average spectrum of the considered

ensemble reads

ρ(z, τ) =
1
πτ

Θ(τ − |z|2), (5.29)

where Θ(x) is the Heaviside step function. We see that complex eigenvalues are uniformly

distributed on a growing disc of radius
√
τ. v , 0 whenever the spectral density is nonzero.

Over all, for τ = 1 the shock wave dynamics reproduces the result of [91] for the standard

eigenvector correlator and the classical result for the average eigenvalue probability density of

the Ginibre ensemble.

Coming back to the structure of characteristic lines in the space of w and τ, we see that if we

choose a nonzero z, at first there are no caustics or shocks. The eigenvalues reach our position

on the complex plane at τc and the caustics and the shock emerge. After that, we are in the bulk

of the eigenvalues and this is associated (at µ = 0) with the shock only.

This concludes the analysis of the sample initial condition.
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5.5 Chapter summary and outlook

In this chapter, we have indeed seen that our approach, based on Dyson’s original Coulomb gas

method, can be used to study non-Hermitian ensembles. When a matrix not constrained by any

symmetries performs Brownian motion in the complex space, the associated extended averaged

characteristic polynomial obeys a diffusion-like equation in an auxiliary space of a complex vari-

able w. This fact allowed us to derive coupled, nonlinear partial differential equations, which,

in the large matrix size limit, govern the behavior of the complex eigenvalues and some aspects

of the correlations between left and right eigenvectors. We have studied an example of a simple

initial condition and thus uncovered caustics and shocks in the structure of characteristic lines

forming the solution of one of the equations. We stress here, that the method can tackle more

complicated initial conditions resulting both in normal and non-normal non-Hermitian random

matrix ensembles.

Finally, consider a Hermitian random matrix - the resolvent, living in the complex plane z can

be seen as a tool for extracting the eigenvalue spectrum. This is done by approaching the cut

of the Green’s function, formed associated with the eigenvalues residing on the real line. The

knowledge of the behavior of the resolvent beyond the Im(z) = 0 axis is necessary to do this.

The eigenvalues of non-Hermitian matrices, on the other hand, form domains in the space of

z. To obtain the information about the eigenvalues inside those domains one needs an extra

spatial dimension. We imagine that the knowledge of the dynamics in this auxiliary spaces is

necessary to uncover the properties of the ensemble. The calculations presented above enforce

this intuition and moreover indicate, that taking into account the additional variable w, will

form the key to unravelling the intertwined properties of eigenvalues and eigenvectors of non-

Hermitian matrices.





Chapter 6

Conclusions and outlook

6.1 Summary

This thesis is dedicated to the study of matrices, which entries perform a continuous random

walk in the space of complex numbers. In particular, we investigate Hermitian, Wishart, chiral

and non-Hermitian matrix ensembles.

In the first three cases, the central object of our interest is the average characteristic polynomial

(ACP). It satisfies exact (in the size of the matrix), complex partial differential equations, which

are translated, via the Cole-Hopf transform, to their nonlinear counterparts. The large matrix size

limit of the latter, describes the evolution of the associated Green’s function and is solved with

the method of complex characteristics. Due to the nonlinearity of the equation, the method fails

when, at certain points, the parametrization of the characteristic lines becomes singular. This

occurs, when characteristics condense on curves refereed to as caustics, which in the studied

models, can coincide with shocks (required to resolve the ambiguities in the solutions) and

edges of the spectra. Therefore, the universal, local asymptotic behavior of eigenvalues at the

borders of the spectrum, can be seen as a precursor of the shock formation. This is studied with

the use of the derived PDEs, as they are arbitrary in the matrix size parameter. One, thus recovers

the behavior of the ACP in this regime. Dealing with plain caustics, associated with the merging

of two saddle points (in the integral description of the ACP), one recovers the Airy function. If

a caustic is confined to the origin (a situation occurring for the Wishart and chiral ensembles

due to an additional symmetry), we obtain the Bessel function. Three saddle points meeting

at one point, translates to two caustics merging in a cusp - this yields the Pearcey function, or
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in the presents of the additional symmetry, a Bessoid function. Theses have counterparts in

optical catastrophes due to a common relation with singularity theory. In case of the Hermitian

matrices, we have supplemented this picture with the study of the averaged inverse characteristic

polynomial (AICP). Together with the ACP, they are the building blocks of the random matrix

kernel and thus their critical behavior captures all the associated properties of the ensemble.

The above results are applied in the context of spontaneous breakdown of chiral symmetry in

Euclidean Quantum Chromodynamics. We propose an effective model, based on the diffusing

chiral matrices, that captures the behavior of the fixed topological charge partition function at

the critical moment of the transition. The scenario with an infinite number of colors for which

the symmetry breaking occurs (as shown in lattice simulations) for a critical space volume, is

compatible with our model. This is particularly interesting, because the weak-strong coupling

phase transition of the Wilson loop (in large Nc) belongs to the universality class of a gapped-

gapless transition occurring for the spectrum associated with a multiplicative diffusion of unitary

matrices. We hope this work will encourage further numerical studies dedicated to the relation

of the deconfinement and SχSB transitions.

Even thou, in the case of non-Hermitian random matrices, the usual ACP can’t be used to extract

the information it carries in the case of ensembles of real spectra, our overall strategy turned out

to be quite fruitful. In this case, the basic object investigated is, what we call, an extended

average characteristic polynomial - a function of two complex variables, the second of which

being auxiliary in the sense that at the end of the calculation it is taken to zero. Surprisingly,

the EACP follows a diffusion equation in this additional complex space. One can then construct

two distinct Cole-Hopf transforms which evolve according two a pair of coupled (exact in N)

nonlinear partial differential equations, one of which is a Burgers equations. In the large matrix

size limit, they are solved with the method of characteristics. For an example, simple initial

condition, we find caustics and a shock in the auxiliary space. The objects finally recovered are

the spectral density and a certain correlator of left and right eigenvectors.

Let us recapitulate by stating the following, original contributions that found their place in this

thesis.

• In chapter 2 and published in paper 5 (see page 93), for diffusing Hermitian matrices:

– derivation and solution of partial differential equations governing, irrespective of the

initial condition, the evolution of ACP and the AICP;
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– derivation of the complex, viscid Burgers equation for the Cole-Hopf transform of

the ACP and AICP, valid for arbitrary initial condition and its solution (including the

unraveling of the structure formed by characteristic curves, caustics and shocks), in

the large matrix size limit, for the case of a nontrivial initial condition;

– connecting the properties of characteristics and caustics to the dynamics of saddle

points in integral representations of the ACP and AICP, resulting in their asymptotic

microscopic behavior at the spectral edges described by families o Airy and Pearcey

special functions.

• In chapter 3, published in papers 1 and 3, for diffusing Wishart matrices:

– derivation of the PDE, governing, in the large matrix size limit, the evolution of the

Green’s function, as well as its solution, for two generic initial conditions (including

the unraveling of the structure formed by characteristic curves, caustics and shocks);

– derivation and solution of the PDE driving the evolution of the ACP;

– derivation of the nonlinear PDE governing the dynamics of the Cole-Hopf transform

of the ACP and employing it to identify the large matrix size, microscopic behavior

of the ACP at the so-called soft and hard spectral edges, recovering Airy and Bessel

function respectively;

– identifying the large matrix size, microscopic behavior of the ACP at the critical

point and thus recovering the Bessoid function.

• In chapter 4 and published in paper 2, in the context of spontaneous chiral symmetry

breaking in Euclidean quantum chromodynamics:

– introducing an effective model for SχSB, based on diffusing chiral matrices, in

which, in a scenario with infinite space volume (corresponding to the size of the

matrix), the time is associated with the temperature, whereas, for infinite number of

colors (corresponding to the size of the matrix), time plays the role of the volume of

space;

– derivation and solution of the PDE governing the evolution of the ACP of the chiral

matrix (through its relation with the diffusing Wishart matrix);

– derivation of the nonlinear, complex, viscous Burgers-like PDE driving the dynam-

ics of the Cole-Hopf transform of the ACP; its solution in the large matrix size limit

based on the association with the case of the diffusing Hermitian matrix;
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– identifying the asymptotic, microscopic behavior of the ACP at the critical point,

recovering the Bessoid function and thus, under the conjectured universality, obtain-

ing the form of the fixed topological charge QCD partition function, at the onset of

SχSB.

• In chapter 5, published in paper 4, for diffusing non-Hermitian matrices:

– introduction of the EACP, related to the behavior of both eigenvalues and eigenvec-

tors, via a specific auxiliary variable;

– derivation and solution of a PDE driving the evolution of the EACP;

– derivation and large matrix size limit solution (for a simple initial condition) of

two coupled, nonlinear partial differential equations describing the Cole-Hopf trans-

forms of the EACP, and thus, revealing the dynamics (including caustics and shocks)

of intertwining of eigenvectors and eigenvalues, hidden in the auxiliary variable.

6.1.1 Prospects

In conclusion, let us identify some of the many challenges emerging in view of the results

described above.

First, the entries of the matrices we studied are stochastically evolving on the complex plane ( β

is equal to 2). It is possible that similar partial differential equations for the ACP (or its function)

can be derived if we restrict the dynamics to the real line or extend it to the quaternion space.

Moreover, one can imagine starting the calculations from the eigenvalue Langevin equations and

take β to be an arbitrary number. The latter would definitely require an employment of different

methods then presented in this thesis.

Another generalization is to introduce a potential binding the evolution of the matrix entries.

For the simplest, harmonic case, an Ornstein–Uhlenbeck process, this can be achieved with the

use of the presented framework. As for the general case, it remains an open problem. Such a

construction, if possible, could be used for a heuristic proof of universality.

Furthermore, one would like to investigate the properties of matrices driven by different stochas-

tic processes. It would be interesting to see the partial differential equations arising, from dis-

crete random walks or fractional Brownian motion.
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Some of the large matrix size limit results of this thesis can be obtained with the methods of

Free Random Variable Theory, where the Burgers equation is ubiquitous. Exploring these con-

nections could bring new insights to the subjects.

The classical Burgers equation can be also studied with a random initial condition. What would

that mean for its complex version describing the Green’s function? From this question we are

one step away of asking weather there exists a random matrix model and an associated object

that fulfills a stochastic Burgers equation (equivalent to the Kardar-Parisi-Zhang equation [105]).

Turning to the non-Hermitian ensembles - it will be interesting to study the introduced model

for more complicated initial conditions. We don’t fully understand however, what is the role

of the EACP (at arbitrary matrix size) in those cases. Additionally, there is the issue of higher

moments of the extended characteristic polynomial. We speculate that the they fulfill a hierarchy

of partial differential equations. Finally, the complete understanding of the role of the auxiliary

variable is still an open problem.

We hope to pursue some of those issues in the future.





Appendix A

Four useful identities for the Hilbert

transform

The three basic identities concerning the Hilbert transform, we make use of in this thesis, are

H
[
H (u)

]
= −u, (A.1)

H

[
dku
dxk

]
=

dk

dxkH [u] , (A.2)

and

H
[
H (u) u

]
=

1
2

[
]H (u)

]2
−

1
2

u2 (A.3)

valid, provided all the transforms exist and u, as well as, in the second case, its derivatives, are

proper enough functions of x.

In chapter 3 however, we need a fourth, slightly less standard formula, which reads

H

[
x

d
dx
{ρ(x)H

[
ρ(x)

]
}

]
= x

d
dx
H

[
ρ(x)H

[
ρ(x)

]]
(A.4)

giving

= xH
[
ρ(x)

] dH
[
ρ(x)

]
dx

− xρ(x)
dρ(x)

dx
. (A.5)
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We provide the reader with the following, simple proof. Take a function f (x) such thatH
[
f (x)

]
andH

[
x f (x)

]
exist. Then, we have:

H
[
x f (x)

]
= −

∫
y f (y)
x − y

dy = −

∫
(y − x) f (y)

x − y
dy + −

∫
x f (y)
x − y

dy (A.6)

= xH
[
f (x)

]
−

∫
f (y)dy (A.7)

In our case f (x) = d
dx

{
ρ(x)H

[
ρ(x)

]}
and, as we assume that ρ vanishes at plus and minus infinity,

the second term in (A.7) becomes zero, which, on behalf of (A.2), concludes the calculation.



Appendix B

Kernel for the diffusing Hermitian

matrices via the connection to random

matrices with a source

Here, we demonstrate how the model from chapter 2 can be translated to an ensemble of static

Hermitian matrices introduced in [106], for which the Gaussian probability distribution contains

a source . The content of this appendix also appears in [32]

We start by noticing that at time τ, the ensemble of the diffusing matrices H, for which the initial

condition is a deterministic matrix equal to H0, is equivalent to the ensemble of matrices defined

by

Xτ = H0 + X
√
τ, (B.1)

where X is a random complex matrix distributed according to a GUE measure

P(X)dX ∼ exp
(
−

N
2

TrX2
)

dX. (B.2)

A change of variables, defined by (B.1), gives

P(Xτ)dXτ ∼ exp
(
−

N
2τ

Tr(Xτ − H0)2
)

dXτ, (B.3)

79



Appendix B. Kernel via random matrices with a source 80

as announced, a probability measure for the GUE matrix with the so-called external source. τ is

now understood just as a parameter.

Having this connection established, we will closely follow the works on such random matrices

[107–109]. In particular, we will show how the random matrix kernel is constructed with the

use the ACP and the AICP. The kernel namely reads

KN(x, y, τ) =

N−1∑
i=0

Θi(x, τ)Πi(y, τ), (B.4)

where Θi(x, τ) and Πi(y, τ) are constructed as follows. First, we specify H0. Without loss of

generality, it can be written as a diagonal matrix

H0 = diag

a1 a1 ...︸  ︷︷  ︸
n1

; a2 a2 ...︸  ︷︷  ︸
n2

; ...; ad ...︸︷︷︸
nd

 , (B.5)

with d eigenvalues ai of multiplicities ni. ~n = (n1, ..., nd) is formed out of the degeneracies of

associated eigenvalues.

One defines its norm by |~n| ≡
∑d

i=1 ni, it is equal to N, the size of our matrices.

Θi(x, τ)s are referred to as multiple orthogonal polynomials of type I. They are defined through

our AICPs, by

Θ~m(x, τ) ≡ θ+
|~m|(x, τ) − θ−

|~m|(x, τ) =

√
N

2πτ

∮
Γ0

du exp
(
−N

(u − x)2

2τ

)
θ0,~m(u), (B.6)

with an arbitrary multiplicity vector ~m, an initial condition θ0,~m(x) =
∏d

i=1(x − ai)−mi and the

contour Γ0 encircling all ai’s clockwise. The + (−) sign referrs to the AICP for Im(z) > 0

(Im(z) < 0 ) defined with the contour Γ+ (Γ−)

Πi(y, τ)s are type II multiple orthogonal polynomials and are written in terms of the ACP ac-

cording to

Π~m(x, τ) ≡ π|~m|(x, τ) =

√
N

2πτ

∫ ∞

−∞

dq exp
(
−N

(q − ix)2

2τ

)
π0,~m(−iq), (B.7)

with an initial condition π0,~m(x) =
∏d

i=1(x − ai)mi .
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Finally, one introduces an ordering of the ~n vector by

~n(0) = (0, 0, ..., 0),

~n(1) = (1, 0, ..., 0),

...

~n(n1) = (n1, 0, ..., 0),

~n(n1+1) = (n1, 1, ..., 0),

...

~n(N) = (n1, n2, ..., nd). (B.8)

which is a sequence increasing in norm. It allows to combine type I and type II polynomials into

pairs of

Θi ≡ Θ~n(i+1) and Πi ≡ Π~n(i) , i = 0, ...,N − 1, (B.9)

which in turn form (B.4).

To provide an example corresponding to our study in chapter 2, we consider the case of a1 =

a, a2 = −a and multiplicities n1 = n2 = N/2. One obtains

KN(x, y) =
N

2πτ

∮
Γ0

du
∫ ∞

−∞

dq exp
(
−N

(q − iy)2

2τ
− N

(u − x)2

2τ

)
I(q, u), (B.10)

where I(q, u) is the sum over the initial conditions, in this case, equal to

I(q, u) =

N
2 −1∑
j=0

(−iq − a) j

(u − a) j+1 +
(−iq − a)N/2

(u − a)N/2

N
2 −1∑
j=0

(−iq + a) j

(u + a) j+1 =
1

u + iq

(
1 −

(−q2 − a2)N/2

(u2 − a2)N/2

)
.

By noticing that, under the integral, the first term vanishes, we arrive at the formula

KBH(x, y) = −
N

2πτ

∮
Γ0

du
∫ ∞

−∞

dq
(−q2 − a2)N/2

(u2 − a2)N/2

1
u + iq

exp
(
−N

(q − iy)2

2τ
− N

(u − x)2

2τ

)
,

(B.11)

well known (see for example [110]) for τ = 1.





Appendix C

The Laguerre orthogonal polynomial

and its ACP equivalent

Here, we show how a time dependent monic orthogonal polynomial arises form the characteristic

polynomial for which Qν
N(z, τ = 0) = zN . We namely prove, that for this initial condition:

Qν
N (z, τ) = (−τ)N N!LνN

( z
τ

)
(C.1)

where

LνN(x) =

N∑
j=0

(−z) j

j!

 N + ν

N − j

 . (C.2)

are the Laguerre polynomials, and hence:

Qν
N (z, τ) =

N∑
j=0

(−1) jzN− jτ jN!M!
j!(N − j)!(M − j)!

(C.3)

This way, showing that Qν
N(z, τ) obeys (3.46), reduces to straightforward differentiation.

First, note that, due to the simplicity of the initial condition, the integration measures for the

matrix elements in the averaging of the ACP are just:

dµ
(
xi j

)
=

1
√
πτ

e−
x2
i j
τ dxi j
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and

dµ
(
yi j

)
=

1
√
πτ

e−
y2
i j
τ dyi j.

Moreover, the following formula for the second moment of the Gaussian integral will become

useful

1
√
πτ

∫ +∞

−∞

x2e−
x2
τ dx =

τ

2
.

We now proceed to the main calculation. As we have already learned, the ACP can be written

in terms of an integral over Grassmann variables according to

〈
det

(
z − K†K

)〉
=

∫
exp (ηzη) exp

(
−ηK†Kη

)
dηdηdµ (x)dµ (y)

Subsequently, one expands the second exponent. Only the terms up to the power of N survive,

in the rest, we have to double at least one of the anti-commuting variables. This way one gets

= (πτ)−MN
N∑

n=0

(−1)n

n!

∫
exp

∑
i

ηizηi

 exp

−1
τ

∑
i, j

(
x2

ji + y2
ji

)

×

∑
i, j,k

ηiK jiK jkηk


n ∏

i, j,k

dηidηkdx jidy ji

where j’s always run from 1 to M, whereas i’s and k’s from 1 to N. We write K in terms of its

entries

= (πτ)−MN
N∑

n=0

(−1)n

n!

∫
exp

∑
i

ηizηi

 exp

−1
τ

∑
i, j

(
x2

ji + y2
ji

)

×

∑
i, j,k

ηiηk(x ji − iy ji)(x jk + iy jk)


n ∏

i, j,k

dηidηkdx jidy ji

and execute the nth power.

= (πτ)−MN
N∑

n=1

(−1)n

n!

∫
exp

∑
i

ηizηi

 exp

−1
τ

∑
i, j

(
x2

ji + y2
ji

)
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×


∑

{ js}, {it}, {kp},

s,t,p=1,...,n

n∏
r=1

ηirηkr (x jrir − iy jrir )(x jrkr + iy jrkr )


∏
i, j,k

dηidηkdx jidy ji

The last expression requires a closer inspection. The first observation is that only terms with

even powers of y’s and x’s survive. Second - to build a 4th power of a particular x or y one

would need to use the same Grassmann variable twice. This means one only obtains second

moments of the Gaussian integral. For each n then, we will have a product of n second powers

of particular x jrir and/or y jrir formed by equating certain ir and kr′ with the condition that if

r , r′ then also jr and jr′ have to be equated (let’s call these contractions). The number of

such contractions possible is the number of permutations of {1, . . . , n}. When y’s are contracted,

they always give a plus (again, because i’s are contracted with k’s, otherwise we double the

Grassmann variable). Without explicitly performing all the Gaussian integrations yet, we write:

= (πτ)−MN
N∑

n=0

(−1)n

n!

∫
exp

∑
i

ηizηi

 exp

−1
τ

∑
i, j

(
x2

ji + y2
ji

)

×
∑

{ js}, {it}, {kp}

s,t,p=1,...,n

n∑
l=0

(
n
l

) ∑
σ∈Sn

δi1kσ(1)δ j1 jσ(1) η̄i1ηk1 x j1i1 x jσ(1)kσ(1) . . . δilkσ(l)δ jl jσ(l) η̄ilηkl x jlil x jσ(l)kσ(l)

× δil+1kσ(l+1)δ jl+1 jσ(l+1) η̄il+1ηkl+1y jl+1il+1y jσ(l+1)kσ(l+1) . . . δinkσ(n)δ jn jσ(n) η̄inηkny jniny jσ(n)kσ(n)

×
∏
i, j,k

dηidηkdx jidy ji =

Now, the ik deltas are executed and we rearrange the η’s

= (πτ)−MN
N∑

n=0

(−1)n

n!

∫
exp

∑
i

ηizηi

 exp

−1
τ

∑
i, j

(
x2

ji + y2
ji

)
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×
∑
{ js}, {it}

s,t=1,...,n

η̄i1ηi1 . . . η̄inηin

n∑
l=0

(
n
l

)
x2

j1i1 . . . x2
jlily

2
jl+1il+1

. . . y2
jnin

×
∑
σ∈Sn

sgn(σ)δ j1 jσ(1) . . . δ jn jσ(n)

∏
i, j,k

dηidηkdx jidy ji =

Finally, we perform the Gaussian integration in the real variables, obtaining:

=

N∑
n=0

(−1)nτn

n!

∑
{ js}, {it},

s,t=1,...,n

∫
η̄i1ηi1 . . . η̄inηin exp

∑
i

ηizηi



×
∑
σ∈Sn

sgn(σ)δ j1 jσ(1) . . . δ jn jσ(n)

∏
i,k

dηidηk =

The sum over l meant that for each one out of n contractions, we could choose whether we

performed it for an x or a y, hence
∑

l

(
n
l

)
= 2n possibilities. This canceled with the 2n stemming

from the second moment calculation/Gaussian integration. Remembering that it = it′ will give

zero, we integrate with respect to the Grassmann variables, which yields

=

N∑
n=0

(−1)nτnzN−n

n!

∑
{ js}, {it}

s,t=1,...,n

it , it′ t , t′

∑
σ∈Sn

sgn(σ)δ j1 jσ(1) . . . δ jn jσ(n) .

The sum over {it} produces a factor of N!
(N−n)! . The sum over { js} is not that simple. Nevertheless,

one can find that a factor of M!
(M−n)! emerges out of it. Overall this gives the sought for monic

orthogonal polynomial.
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